-
Notifications
You must be signed in to change notification settings - Fork 99
comparison_ABM_EBM_SIR
Julius Bañgate edited this page Apr 15, 2023
·
5 revisions
Path: Library models/Toy Models/Epidemiology/models/SIR (ABM vs EBM).gaml
/**
* Name: comparison_ABM_EBM_SIR
* Author: Benoit Gaudou
* Description: Comparison between an agent-based and an equation-based model of the SIR model.
* The ABM use a grid to place the agents, and each cell will be the location of an agent, while the EBM
* is only using a ODE System and no geographical representation.
* Tags: equation, math, grid
*/
model comparison_ABM_EBM_SIR
global {
//Number of susceptible individuals
int number_S <- 499;
//Number of infectious individuals
int number_I <- 1;
//Number of Resistant individuals
int number_R <- 0;
//Beta parameter used for the infection of susceptible individuals
float beta <- 0.1;
//Gamma parameter used for the resistance gained by the infectious individuals
float gamma <- 0.01;
//Size of the neighbours
int neighbours_size <- 2;
//Total number of individuals
int N <- number_S + number_I + number_R;
//Number of hosts (for ABM)
int nb_hosts <- number_S + number_I + number_R update: length(Host);
//Number of infected hosts (for ABM)
int nb_infected <- number_I update: Host count (each.is_infected);
float hKR4 <- 0.7;
geometry shape <- square(50);
init {
//Create the number of hosts susceptibles
create Host number: number_S {
is_susceptible <- true;
is_infected <- false;
is_immune <- false;
color <- rgb(46,204,113);
}
//Create the number of hosts infectious
create Host number: number_I {
is_susceptible <- false;
is_infected <- true;
is_immune <- false;
color <- rgb(231,76,60);
}
//Create the node agent for the SIR ODE System
create node_agent number: 1 {
S <- float(number_S);
I <- float(number_I);
R <- float(number_R);
}
}
}
//Grid that will be used to discretize space
grid sir_grid width: 50 height: 50 {
rgb color <- #white;
list<sir_grid> neighbours <- (self neighbors_at neighbours_size) of_species sir_grid;
}
//Species host which represents the host of the disease
species Host {
//Different booleans to know in which state is the host
bool is_susceptible <- true;
bool is_infected <- false;
bool is_immune <- false;
//Color of the host
rgb color <- rgb(46,204,113);
//Location of the agent among the grid
sir_grid myPlace;
//Count of neighbors infected
int ngb_infected_number function: self neighbors_at(neighbours_size) count(each.is_infected);
init {
//The location is chosen randomly
myPlace <- one_of(sir_grid);
location <- myPlace.location;
}
//Reflex to move the agent in the neighbours cells
reflex basic_move {
myPlace <- one_of(myPlace.neighbours);
location <- myPlace.location;
}
//Reflex to pass the agent to the state infected
reflex become_infected when: is_susceptible {
//Probability of being infected according to the number of infected among the neighbours
if (flip(1 - (1 - beta) ^ ngb_infected_number)) {
is_susceptible <- false;
is_infected <- true;
is_immune <- false;
color <- rgb(231,76,60);
}
}
//Reflex to pass the agent to the state immune
reflex become_immune when: (is_infected and flip(gamma)) {
is_susceptible <- false;
is_infected <- false;
is_immune <- true;
color <- rgb(52,152,219);
}
aspect basic {
draw circle(1) color: color;
}
}
//Species node agent that will represent the SIR Ordinary differential equations system
species node_agent {
float t;
float I;
float S;
float R;
equation eqSIR {
diff(S,t) = -beta * S * I / N ;
diff(I,t) = beta * S * I / N - gamma* I;
diff(R,t) = gamma* I;
}
reflex solving {solve eqSIR method:#rk4 step_size: 1;}
}
experiment Simulation_ABM_EBM type: gui {
parameter 'Number of Susceptible' type: int var: number_S <- 495 category: "Initial population";
parameter 'Number of Infected' type: int var: number_I <- 5 category: "Initial population";
parameter 'Number of Removed' type: int var: number_R <- 0 category: "Initial population";
parameter 'Beta (S->I)' type: float var: beta <- 0.1 category: "Parameters";
parameter 'Gamma (I->R)' type: float var: gamma <- 0.01 category: "Parameters";
parameter 'Size of the neighbours' type: int var: neighbours_size <- 1 min: 1 max: 5 category: "Infection";
output {
layout #split;
display sir_display axes: false {
grid sir_grid border: #lightgray;
species Host aspect: basic;
}
display ABM type: 2d {
chart 'Population' type: series background: #white style: exploded {
data 'susceptible' value: (Host as list) count (each.is_susceptible) color: rgb(46,204,113) marker_size: 0.5;
data 'infected' value: (Host as list) count (each.is_infected) color: rgb(231,76,60) marker_size: 0.5;
data 'immune' value: (Host as list) count (each.is_immune) color: rgb(52,152,219) marker_size: 0.5;
}
}
display EBM type: 2d {
chart "Population" type: series background: #white {
data 'S' value: first(node_agent).S color: rgb(46,204,113) marker: false;
data 'I' value: first(node_agent).I color: rgb(231,76,60) marker: false;
data 'R' value: first(node_agent).R color: rgb(52,152,219) marker: false;
}
}
display ABM_EBM type: 2d {
chart 'Population' type: series background: #white style: exploded {
data 'susceptible' value: (Host as list) count (each.is_susceptible) color: rgb(39,174,96) marker_size: 0.5;
data 'infected' value: (Host as list) count (each.is_infected) color: rgb(192,57,43) marker_size: 0.5;
data 'immune' value: (Host as list) count (each.is_immune) color: rgb(41,128,185) marker_size: 0.5;
data 'S' value: first(node_agent).S color: rgb(46,204,113) marker: false;
data 'I' value: first(node_agent).I color: rgb(231,76,60) marker: false;
data 'R' value: first(node_agent).R color: rgb(52,152,219) marker: false;
}
}
}
}
- Installation and Launching
- Workspace, Projects and Models
- Editing Models
- Running Experiments
- Running Headless
- Preferences
- Troubleshooting
- Introduction
- Manipulate basic Species
- Global Species
- Defining Advanced Species
- Defining GUI Experiment
- Exploring Models
- Optimizing Model Section
- Multi-Paradigm Modeling
- Manipulate OSM Data
- Diffusion
- Using Database
- Using FIPA ACL
- Using BDI with BEN
- Using Driving Skill
- Manipulate dates
- Manipulate lights
- Using comodel
- Save and restore Simulations
- Using network
- Headless mode
- Using Headless
- Writing Unit Tests
- Ensure model's reproducibility
- Going further with extensions
- Built-in Species
- Built-in Skills
- Built-in Architecture
- Statements
- Data Type
- File Type
- Expressions
- Exhaustive list of GAMA Keywords
- Installing the GIT version
- Developing Extensions
- Introduction to GAMA Java API
- Using GAMA flags
- Creating a release of GAMA
- Documentation generation