-
Notifications
You must be signed in to change notification settings - Fork 99
PredatorPrey_step7
In this seventh step, we will focus on the display and more specifically the aspects of the agents: how they are represented. It can be a simple shape (circle, square, etc.), an icon, a polygon (see later GIS support).
- Definition of two new aspects for the prey and predator agents:
- A icon
- A square with information about the agent energy
- Use of the
icon
aspect as default aspect for the prey and predator agents.
We add a new variable of type image_file
(a particular kind of file
) called my_icon
to the generic_species
.
We define as well two new aspects:
-
icon
: draw the image given by the variablemy_icon
, -
info
: draw a square of side sizesize
and colorcolor
and draw as a text the energy of the agent (with a precision of 2 digits).
species generic_species {
...
image_file my_icon;
...
aspect base {
draw circle(size) color: color ;
}
aspect icon {
draw my_icon size: 2 * size ;
}
aspect info {
draw square(size) color: color ;
draw string(energy with_precision 2) size: 3 color: #black ;
}
}
We specialize the prey
species from the generic_species
species as follows:
- definition of the initial value of the agent variables:
species prey parent: generic_species {
...
image_file my_icon <- image_file("../includes/data/sheep.png") ;
...
}
You have to copy it in your project folder: includes/data/
.
As done for the prey
species, we specialize the predator
species from the generic_species
species:
- definition of the initial value of the agent variables:
species predator parent: generic_species {
...
image_file my_icon <- image_file("../includes/data/wolf.png") ;
...
}
You have to copy it in your project folder: includes/data/
.
We change the default aspect of the prey and predator agents to icon
aspect.
output {
display main_display {
grid vegetation_cell lines: #black ;
species prey aspect: icon ;
species predator aspect: icon ;
}
}
We define a new display called info_display
that displays the prey and predator agents with the info
aspect.
output {
display info_display {
grid vegetation_cell lines: #black ;
species prey aspect: info;
species predator aspect: info;
}
}
model prey_predator
global {
int nb_preys_init <- 200;
int nb_predators_init <- 20;
float prey_max_energy <- 1.0;
float prey_max_transfer <- 0.1;
float prey_energy_consum <- 0.05;
float predator_max_energy <- 1.0;
float predator_energy_transfer <- 0.5;
float predator_energy_consum <- 0.02;
float prey_proba_reproduce <- 0.01;
int prey_nb_max_offsprings <- 5;
float prey_energy_reproduce <- 0.5;
float predator_proba_reproduce <- 0.01;
int predator_nb_max_offsprings <- 3;
float predator_energy_reproduce <- 0.5;
int nb_preys -> {length(prey)};
int nb_predators -> {length(predator)};
init {
create prey number: nb_preys_init;
create predator number: nb_predators_init;
}
}
species generic_species {
float size <- 1.0;
rgb color;
float max_energy;
float max_transfer;
float energy_consum;
float proba_reproduce;
int nb_max_offsprings;
float energy_reproduce;
image_file my_icon;
vegetation_cell my_cell <- one_of(vegetation_cell);
float energy <- rnd(max_energy) update: energy - energy_consum max: max_energy;
init {
location <- my_cell.location;
}
reflex basic_move {
my_cell <- one_of(my_cell.neighbors2);
location <- my_cell.location;
}
reflex eat {
energy <- energy + energy_from_eat();
}
reflex die when: energy <= 0 {
do die;
}
reflex reproduce when: (energy >= energy_reproduce) and (flip(proba_reproduce)) {
int nb_offsprings <- rnd(1, nb_max_offsprings);
create species(self) number: nb_offsprings {
my_cell <- myself.my_cell;
location <- my_cell.location;
energy <- myself.energy / nb_offsprings;
}
energy <- energy / nb_offsprings;
}
float energy_from_eat {
return 0.0;
}
aspect base {
draw circle(size) color: color;
}
aspect icon {
draw my_icon size: 2 * size;
}
aspect info {
draw square(size) color: color;
draw string(energy with_precision 2) size: 3 color: #black;
}
}
species prey parent: generic_species {
rgb color <- #blue;
float max_energy <- prey_max_energy;
float max_transfer <- prey_max_transfer;
float energy_consum <- prey_energy_consum;
float proba_reproduce <- prey_proba_reproduce;
int nb_max_offsprings <- prey_nb_max_offsprings;
float energy_reproduce <- prey_energy_reproduce;
image_file my_icon <- image_file("../includes/data/sheep.png");
float energy_from_eat {
float energy_transfer <- 0.0;
if(my_cell.food > 0) {
energy_transfer <- min([max_transfer, my_cell.food]);
my_cell.food <- my_cell.food - energy_transfer;
}
return energy_transfer;
}
}
species predator parent: generic_species {
rgb color <- #red;
float max_energy <- predator_max_energy;
float energy_transfer <- predator_energy_transfer;
float energy_consum <- predator_energy_consum;
float proba_reproduce <- predator_proba_reproduce;
int nb_max_offsprings <- predator_nb_max_offsprings;
float energy_reproduce <- predator_energy_reproduce;
image_file my_icon <- image_file("../includes/data/wolf.png");
float energy_from_eat {
list<prey> reachable_preys <- prey inside (my_cell);
if(! empty(reachable_preys)) {
ask one_of (reachable_preys) {
do die;
}
return energy_transfer;
}
return 0.0;
}
}
grid vegetation_cell width: 50 height: 50 neighbors: 4 {
float max_food <- 1.0;
float food_prod <- rnd(0.01);
float food <- rnd(1.0) max: max_food update: food + food_prod;
rgb color <- rgb(int(255 * (1 - food)), 255, int(255 * (1 - food))) update: rgb(int(255 * (1 - food)), 255, int(255 * (1 - food)));
list<vegetation_cell> neighbors2 <- (self neighbors_at 2);
}
experiment prey_predator type: gui {
parameter "Initial number of preys: " var: nb_preys_init min: 0 max: 1000 category: "Prey";
parameter "Prey max energy: " var: prey_max_energy category: "Prey";
parameter "Prey max transfer: " var: prey_max_transfer category: "Prey";
parameter "Prey energy consumption: " var: prey_energy_consum category: "Prey";
parameter "Initial number of predators: " var: nb_predators_init min: 0 max: 200 category: "Predator";
parameter "Predator max energy: " var: predator_max_energy category: "Predator";
parameter "Predator energy transfer: " var: predator_energy_transfer category: "Predator";
parameter "Predator energy consumption: " var: predator_energy_consum category: "Predator";
parameter 'Prey probability reproduce: ' var: prey_proba_reproduce category: 'Prey';
parameter 'Prey nb max offsprings: ' var: prey_nb_max_offsprings category: 'Prey';
parameter 'Prey energy reproduce: ' var: prey_energy_reproduce category: 'Prey';
parameter 'Predator probability reproduce: ' var: predator_proba_reproduce category: 'Predator';
parameter 'Predator nb max offsprings: ' var: predator_nb_max_offsprings category: 'Predator';
parameter 'Predator energy reproduce: ' var: predator_energy_reproduce category: 'Predator';
output {
display main_display {
grid vegetation_cell border: #black;
species prey aspect: icon;
species predator aspect: icon;
}
display info_display {
grid vegetation_cell border: #black;
species prey aspect: info;
species predator aspect: info;
}
monitor "Number of preys" value: nb_preys;
monitor "Number of predators" value: nb_predators;
}
}
- Installation and Launching
- Workspace, Projects and Models
- Editing Models
- Running Experiments
- Running Headless
- Preferences
- Troubleshooting
- Introduction
- Manipulate basic Species
- Global Species
- Defining Advanced Species
- Defining GUI Experiment
- Exploring Models
- Optimizing Model Section
- Multi-Paradigm Modeling
- Manipulate OSM Data
- Diffusion
- Using Database
- Using FIPA ACL
- Using BDI with BEN
- Using Driving Skill
- Manipulate dates
- Manipulate lights
- Using comodel
- Save and restore Simulations
- Using network
- Headless mode
- Using Headless
- Writing Unit Tests
- Ensure model's reproducibility
- Going further with extensions
- Built-in Species
- Built-in Skills
- Built-in Architecture
- Statements
- Data Type
- File Type
- Expressions
- Exhaustive list of GAMA Keywords
- Installing the GIT version
- Developing Extensions
- Introduction to GAMA Java API
- Using GAMA flags
- Creating a release of GAMA
- Documentation generation