-
Notifications
You must be signed in to change notification settings - Fork 67
Home
The canonical documentation of OpenDTU-OnBattery is hosted at https://opendtu-onbattery.net
If you experience specific problems, you must check the canonical documentation first!
This community-driven Wiki contains additional information.
OpenDTU-OnBattery is a fork of OpenDTU by Thomas Basler (tbnobody).
The main idea behind this project is to limit the amount of unused solar energy from small solar installations (in German "Balkonkraftwerke") that is otherwise injected into the electricity network without the user receiving any money.
Instead of giving it away, this unused solar energy can now be stored into a battery for later use.
OpenDTU-OnBattery can also be used without a battery installed: It can dynamically adjust the power output the inverter in order to avoid surplus solar energy being sent to the electricity network.
As of Release 2024.11.20 OpenDTU-OnBattery can dynamically adjust the power output of many inverters (previous Releases can dynamically adjust the power output of only one inverter).
OpenDTU-OnBattery supports a multitude of battery/battery-charger combinations, always using the HOYMILES inverter series for electricity production.
It will use the information from VICTRON MPPT chargers or dynamically control the HUAWEI R4850 Series rectifiers in order to charge the battery (other forks of this project support other rectifiers as well).
Please keep in mind:
Hoymiles Inverters will work best with 48V/51V LiFePO4 batteries.
Hoymiles Inverters work poorly with 24V batteries (for loads above 250W-300W).
Hoymiles Inverters do not work with 12V batteries.
(illustrative, in reality all inverter Inputs must be connected to the battery)
Zero feed-in (in German: Nulleinspeisung)
With Battery and DC charging via (up to two/three) Victron MPPT
Note: Due to the limitation of most ESP32 boards, you can only use two out of three Victron units, i.e. two Victron MPPTs or one Victron MPPT and a Victron SmartShunt. You can not use two Victron MPPTs and a Victron SmartShunt at the same time. Using a second MPPT will also conflict with the SDM powermeter.
On ESP32-S3-USB boards you can use up to three Victron MPPTs. If three MPPTs are defined in the pin mapping, you will not be able to use the SmartShunt and JK BMS battery interfaces.
With Battery and DC charging via (up to two) Victron MPPT and (optional) Victron SmartShunt (see conditions mentioned above)
With JK BMS, Battery and DC charging via (up to two) Victron MPPT
With Pylontech/Pytes/SBS Unipower/Pylontech-Protocol Battery and DC charging via (up to two) Victron MPPT
With Battery and AC charging via Huawei Rectifier
using the Huawei AC charger in combination with the CMT2300A radio board for HMT- and HMS-inverters is supported as of Firmware Version 2024.09.11
- Home
- FAQ
- First-Time Installation
- Device Profiles (Pin Config)
- Upgrade from OpenDTU
- Getting Help
- Hilfe erhalten
- Builds & Examples
- ESP32 Versions and Memory
- Victron MPPT solar charger
- VE.Direct
- Victron Smartshunt
- Victron Smart Battery Sense
- Warning on Victron MPPT 100/20
- Pylontech battery
- Pytes battery
- Huawei AC PSU
- SBS Unipower Battery
- Jikong JK BMS
- HOYMILES
- Einschaltstrombegrenzung für Balkonkraftwerke - Inrush current limiter
- Live View
- Farbe des Wechselrichterfensters
- Power Meter
- Dynamic Power Limiter
- Dynamic Power Limiter ‐ (Full) Solar‐Passthrough
- Dynamic Power Limiter Limitations
- DC Voltage ‐ Load correction factor
- Battery
- Battery-Tipps
- 24V Battery issues with Hoymiles
- Home Assistant
- Grafana Dashboard
- XXL Balkonkraftwerk 1500 Watt und mehr! Worauf Ihr achten solltet!
- Wie gefährlich kann ein Balkonkraftwerk werden (FI‐Schutzschalter)
- Hardware Purchase Tipp
- Fan speed controller ‐ add temperature sensing to any fan
- Cable length(s) between battery and inverter
- Kabellänge(n) zwischen Batterie und Wechselrichter
- Diodes ‐ Bypass vs. Blocking Diodes
- Impact of high start-currents to the inverter
- Making Cables for your HOYMILES‐CAUTION