Skip to content

spencerw/changa

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

          ChaNGa - An adaptable N-body and gas dynamics code.
                  (Charm N-body GrAvity solver)

For documentation, see the web site:
https://github.com/N-BodyShop/changa/wiki/ChaNGa

For more help, subscribe to the list [email protected].

Please cite the following papers when publishing results using ChaNGa:

P. Jetley, F. Gioachin, C. Mendes, L. V. Kale, and T. R. Quinn. Massively
parallel cosmological simulations with ChaNGa. In Proceedings of IEEE
International Parallel and Distributed Processing Symposium 2008, 2008.

P. Jetley, L. Wesolowski, F. Gioachin, L. V. Kale, and T. R. Quinn. Scaling
hierarchical n-body simulations on gpu clusters. In Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’10, Washington, DC, USA, 2010. IEEE Computer Society. 

Menon, H., Wesolowski, L., Zheng, G., Jetley, P., Kale, L., Quinn, T.,
Governato, F., 2015. Adaptive Techniques for Clustered N-Body Cosmological
Simulations, Computational Astrophysics and Cosmology, 2, 1.

To compile ChaNGa first compile Charm++ or get a precompiled version.  When
building Charm++, there is a special target "ChaNGa" which will build all the
necessary libraries.  Then to compile ChaNGa itself, run:

./configure
make (or gmake)

The executable ChaNGa will be created together with the submit script charmrun
(for most machines).  Configure takes the usual options and also the
"--enable-cooling" option to specify cooling for gas simulations.

To run the code:

./charmrun +p <procs> ChaNGa <param.file> [ additional options ]

This will work on many machines, and can either be run directly or be
submitted through the local scheduler.  However, on some machines the
application will need to be submitted manually.

More information is available in the online wiki:
https://github.com/N-BodyShop/changa/wiki

Several test simulations are included in subdirectories:

A small globular cluster simulation is included in teststep.  This
simulation can give a quick sanity check that the gravity code is
operating correctly.

A small cosmological simulation is included in testcosmo.

A small shock tube (gas only) simulation is included in testshock.

A small gas collapse simulation is included in testcollapse.

For simple performance benchmarking, arbitrary size simulations can be created
using the tools in testdata.

An example simulation that generates movie frames is included in movie.  See
the director.README in that directory for movie-making options.

ACKNOWLEDGMENTS
================

The development of ChaNGa was supported by a National Science
Foundation ITR grant PHY-0205413 to the University of Washington, and
NSF ITR grant NSF-0205611 to the University of Illinois.  Contributors
to the program include:
Philip Chang
Ronak Buch
Jaemin Choi
Jesse Ashworth
Michael Tremmel
Abhishek Gupta
Aditya Devarakonda
Alexander Fry
Amit Sharma
Ben Keller
Celso Mendes
Charlotte Christensen
Collin J. Sutton
Edgar Solomonik
Evan Ramos
Filippo Gioachin
Gengbin Zheng
Grame Lufkin
Greg Stinson
Harshit Dokania
Harshitha Menon
Iryna Butsky
Isaac Backus
James Wadsley
Jianqiao Liu
Jillian Bellovary
Joachim Stadel
Lukasz Wesolowski
Michael Robson
Orion Lawlor
Peng Wang
Phil Miller
Pritish Jetley
Robel Geda
Rok Roskar
Sayantan Chakravorty
Sijing Chen
Simon Garcia De Gonzalo
Spencer Wallace
Thomas Quinn
Tim Haines
Viraj Paropkari
Yanhua Sun

Packages

No packages published

Languages

  • C++ 66.8%
  • C 25.3%
  • Cuda 3.8%
  • IDL 1.9%
  • M4 0.7%
  • Makefile 0.6%
  • Other 0.9%