forked from N-BodyShop/changa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MultistepNodeLB_notopo.cpp
496 lines (427 loc) · 15.2 KB
/
MultistepNodeLB_notopo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
#include <charm++.h>
#include "cklists.h"
#include "MultistepNodeLB_notopo.h"
#include "TopoManager.h"
#include "ParallelGravity.h"
#include "Vector3D.h"
#include <queue>
#include "formatted_string.h"
extern CProxy_TreePiece treeProxy;
CkpvExtern(int, _lb_obj_index);
using namespace std;
//#define ORB3DLB_NOTOPO_DEBUG CkPrintf
#if CHARM_VERSION > 61002
static void lbinit()
{
LBRegisterBalancer<MultistepNodeLB_notopo>("MultistepNodeLB_notopo",
"Works best with multistepped runs; uses Orb3D_notopo across nodes and greedy intranode");
}
#else
CreateLBFunc_Def(MultistepNodeLB_notopo, "Works best with multistepped runs; uses Orb3D_notopo for larger steps, greedy otherwise");
#endif
void MultistepNodeLB_notopo::init() {
lbname = "MultistepNodeLB_notopo";
if (CkpvAccess(_lb_obj_index) == -1)
CkpvAccess(_lb_obj_index) = LBRegisterObjUserData(sizeof(TaggedVector3D));
}
MultistepNodeLB_notopo::MultistepNodeLB_notopo(const CkLBOptions &opt): CBase_MultistepNodeLB_notopo(opt)
{
init();
if (CkMyPe() == 0){
CkPrintf("[%d] MultistepNodeLB_notopo created\n",CkMyPe());
}
}
bool MultistepNodeLB_notopo::QueryBalanceNow(int step){
if(CkMyPe() == 0) CkPrintf("Orb3dLB_notopo: Step %d\n", step);
return true;
}
/// Threshold for whether to do any load balancing at all as a fraction of
/// active particles
#define LARGE_PHASE_THRESHOLD 0.0001
/// @brief Implement load balancing: store loads and decide whether to
/// do ORB3D load balancing
void MultistepNodeLB_notopo::work(BaseLB::LDStats* stats)
{
#if CMK_LBDB_ON
// find active objects - mark the inactive ones as non-migratable
int count;
const auto num_objs = stats->objData.size();
if(_lb_args.debug() >= 2 && step() > 0) {
// Write out "particle file" of measured load balance information
auto achFileName = make_formatted_string("lb_a.%d.sim", step()-1);
FILE *fp = fopen(achFileName.c_str(), "w");
CkAssert(fp != NULL);
int num_migratables = num_objs;
for(int i = 0; i < num_objs; i++) {
if (!stats->objData[i].migratable) {
num_migratables--;
}
}
fprintf(fp, "%d %d 0\n", num_migratables, num_migratables);
for(int i = 0; i < num_objs; i++) {
if(!stats->objData[i].migratable) continue;
LDObjData &odata = stats->objData[i];
TaggedVector3D* udata = (TaggedVector3D *)odata.getUserData(CkpvAccess(_lb_obj_index));
fprintf(fp, "%g %g %g %g 0.0 0.0 0.0 %d %d\n",
stats->objData[i].wallTime,
udata->vec.x,
udata->vec.y,
udata->vec.z,
stats->from_proc[i],
udata->tp);
}
fclose(fp);
}
int numActiveObjects = 0;
int numInactiveObjects = 0;
// to calculate ratio of active particles in phase
int numActiveParticles = 0;
int totalNumParticles = 0;
for(int i = 0; i < num_objs; i++){
stats->to_proc[i] = stats->from_proc[i];
}
for(int i = 0; i < num_objs; i++){
if(!stats->objData[i].migratable) continue;
LDObjData &odata = stats->objData[i];
TaggedVector3D* udata = (TaggedVector3D *)odata.getUserData(CkpvAccess(_lb_obj_index));
numActiveParticles += udata->numActiveParticles;
totalNumParticles += udata->myNumParticles;
if(udata->numActiveParticles == 0){
numInactiveObjects++;
if(stats->objData[i].migratable){
stats->objData[i].migratable = 0;
#ifdef MCLBMSV
CkPrintf("marking object %d non-migratable (inactive)\n", i);
#endif
stats->n_migrateobjs--;
}
}
else{
numActiveObjects++;
}
}
CkPrintf("numActiveObjects: %d, numInactiveObjects: %d\n", numActiveObjects,
numInactiveObjects);
if(numInactiveObjects < 1.0*numActiveObjects) {
// insignificant number of inactive objects; migrate them anyway
for(int i = 0; i < num_objs; i++){
if(!stats->objData[i].migratable) continue;
LDObjData &odata = stats->objData[i];
TaggedVector3D* udata =
(TaggedVector3D *)odata.getUserData(CkpvAccess(_lb_obj_index));
if(!stats->objData[i].migratable && udata->myNumParticles > 0) {
stats->objData[i].migratable = 1;
stats->n_migrateobjs++;
numActiveObjects++;
numInactiveObjects--;
}
}
CkPrintf("Migrating all: numActiveObjects: %d, numInactiveObjects: %d\n", numActiveObjects, numInactiveObjects);
}
/*
CkPrintf("**********************************************\n");
CkPrintf("Object load predictions phase %d\n", phase);
CkPrintf("**********************************************\n");
for(int i = 0; i < num_objs; i++){
int tp = tpCentroids[i].tp;
int lb = tpCentroids[i].tag;
CkPrintf("tp %d load %f\n",tp,stats->objData[lb].wallTime);
}
CkPrintf("**********************************************\n");
CkPrintf("Done object load predictions phase %d\n", prevPhase);
CkPrintf("**********************************************\n");
*/
// select processors
#ifdef MCLBMSV
//printData(*stats, phase, NULL);
CkPrintf("making active processor list\n");
#endif
count = stats->nprocs();
// let the strategy take over on this modified instrumented data and processor information
if((float)numActiveParticles/totalNumParticles > LARGE_PHASE_THRESHOLD){
if (_lb_args.debug()>=2) {
CkPrintf("******** BIG STEP *********!\n");
}
work2(stats,count);
}
#endif //CMK_LDB_ON
}
/// @brief ORB3D load balance across nodes (as opposed to processors).
void MultistepNodeLB_notopo::work2(BaseLB::LDStats *stats, int count){
const int numobjs = stats->objData.size();
int nmig = stats->n_migrateobjs;
// this data structure is used by the orb3d strategy
// to balance objects. it is NOT indexed by tree piece index
// there are as many entries in it as there are
// migratable (active) tree pieces
vector<OrbObject> tp_array;
tp_array.resize(nmig);
if (_lb_args.debug()>=2) {
CkPrintf("[work2] ready tp_array data structure\n");
}
vector<Event> tpEvents[NDIMS];
for(int i = 0; i < NDIMS; i++){
tpEvents[i].reserve(nmig);
}
OrientedBox<float> box;
int numProcessed = 0;
for(int i = 0; i < numobjs; i++){
if(!stats->objData[i].migratable) continue;
float load;
LDObjData &odata = stats->objData[i];
TaggedVector3D* udata = (TaggedVector3D *)odata.getUserData(CkpvAccess(_lb_obj_index));
if(step() == 0){
load = udata->myNumParticles;
}
else{
load = stats->objData[i].wallTime;
}
tpEvents[XDIM].push_back(Event(udata->vec.x,load,numProcessed));
tpEvents[YDIM].push_back(Event(udata->vec.y,load,numProcessed));
tpEvents[ZDIM].push_back(Event(udata->vec.z,load,numProcessed));
tp_array[numProcessed]= OrbObject(i, udata->myNumParticles);
tp_array[numProcessed].centroid = udata->vec;
numProcessed++;
}
CkAssert(numProcessed==nmig);
orbPrepare(tpEvents, box, nmig, stats, true);
orbPartition(tpEvents,box,CkNumNodes(),tp_array, stats, true);
CkPrintf("MultistepLB> Done OrbPartition Total Nodes %d NodeSize %d\n", CkNumNodes(), CkMyNodeSize());
balanceTPsNode(stats);
refine(stats, numobjs);
if(_lb_args.debug() >= 2) {
// Write out "particle file" of load balance information
auto achFileName = make_formatted_string("lb.%d.sim", step());
FILE *fp = fopen(achFileName.c_str(), "w");
CkAssert(fp != NULL);
int num_migratables = numobjs;
for(int i = 0; i < numobjs; i++) {
if (!stats->objData[i].migratable) {
num_migratables--;
}
}
fprintf(fp, "%d %d 0\n", num_migratables, num_migratables);
for(int i = 0; i < numobjs; i++) {
if(!stats->objData[i].migratable) continue;
LDObjData &odata = stats->objData[i];
TaggedVector3D* udata =
(TaggedVector3D *)odata.getUserData(CkpvAccess(_lb_obj_index));
fprintf(fp, "%g %g %g %g 0.0 0.0 0.0 %d %d\n",
stats->objData[i].wallTime,
udata->vec.x,
udata->vec.y,
udata->vec.z,
stats->to_proc[i],
udata->tp);
}
fclose(fp);
}
}
/// @brief Class for sorting lightly loaded Pes.
class PeLdLesser {
private:
double* s;
public:
PeLdLesser(double* stats) {
s = stats;
}
bool operator()(int l, int r) {
return (s[l] < s[r]);
}
};
/// @brief Class to sort heavily loaded nodes.
class PeLdGreater {
private:
double* s;
public:
PeLdGreater(double* stats) {
s = stats;
}
bool operator()(int l, int r) {
return (s[l] < s[r]);
}
};
/// @brief Refinement strategy to distribute TreePieces evenly among
/// nodes. If heavily loaded nodes are detect, this moves TreePieces
/// off of heavily loaded nodes to underloaded nodes. Note that this
/// does not take into account communication costs.
void MultistepNodeLB_notopo::balanceTPsNode(BaseLB::LDStats* stats) {
int numNodes = CkNumNodes();
int nodeSize = CkNodeSize(0);
double* counts = new double[numNodes]; // total work on each node.
memset(counts, 0.0, numNodes * sizeof(double));
double totalld = 0.0;
vector<vector<int> > objpemap; // vector of migratiable objects on
// each node.
objpemap.resize(numNodes);
for (int i = 0; i < stats->objData.size(); i++) {
if(!stats->objData[i].migratable) continue;
int nd = stats->to_proc[i]/nodeSize;
counts[nd] += stats->objData[i].wallTime;
totalld += stats->objData[i].wallTime;
objpemap[nd].push_back(i);
}
double avgldperpe = totalld / numNodes;
vector<int> unldpes;
vector<int> ovldpes;
double th = 1.20;
double uth = 0.9;
for (int i = (numNodes-1); i >= 0; i--) {
if (counts[i] > th*avgldperpe) {
ovldpes.push_back(i);
} else if (counts[i] < (uth*avgldperpe)) {
unldpes.push_back(i);
}
}
if (ovldpes.size() == 0 || unldpes.size() == 0) {
CkPrintf("No underloaded or overloaded Nodes\n");
return;
} else {
CkPrintf("WARNING: adjusting for overloaded Nodes\n");
}
// make a max heap
make_heap(ovldpes.begin(), ovldpes.end(), PeLdGreater(counts));
sort(unldpes.begin(), unldpes.end(), PeLdLesser(counts));
int undcount = 0;
//CkPrintf("[%d] is the maxLoadedPe with ld %f ovlded %d unldpes %d\n", ovldpes.front(), counts[ovldpes.front()], ovldpes.size(), unldpes.size());
//CkPrintf("[%d] is the minLoadedPe with ld %f\n", unldpes.front(), counts[unldpes.front()]);
int* tmpcounts = new int[numNodes];
memcpy(tmpcounts, counts, numNodes * sizeof(int));
// This is BAD
// srand(42);
while (undcount < unldpes.size() && ovldpes.size() > 0) {
int ovlpe = ovldpes.front();
pop_heap(ovldpes.begin(), ovldpes.end(), PeLdGreater(counts));
ovldpes.pop_back();
for (int k = 0; k < objpemap[ovlpe].size() ; k++) {
int i = objpemap[ovlpe][k];
if (undcount > unldpes.size()) {
break;
}
int to_proc = stats->to_proc[i];
int to_proc_nd = to_proc/nodeSize;
int n_proc = -1;
if (to_proc_nd != ovlpe || !stats->objData[i].migratable) {
continue;
}
if (stats->objData[i].wallTime < 0.2) {
continue;
}
n_proc = unldpes[undcount];
if ((counts[n_proc] + stats->objData[i].wallTime) >= (counts[to_proc_nd])) {
continue;
}
int rand_no = rand() % nodeSize;
int rand_pe_in_nd = n_proc * nodeSize + rand_no;
stats->to_proc[i] = rand_pe_in_nd;
counts[to_proc_nd] = counts[to_proc_nd] - stats->objData[i].wallTime;
counts[n_proc] = counts[n_proc] + stats->objData[i].wallTime;
objpemap[n_proc].push_back(i);
if (counts[n_proc] > uth*avgldperpe) {
undcount++;
}
if (counts[to_proc_nd] > th*avgldperpe) {
ovldpes.push_back(ovlpe);
push_heap(ovldpes.begin(), ovldpes.end(), PeLdGreater(counts));
}
if (counts[n_proc] > th*avgldperpe) {
ovldpes.push_back(n_proc);
push_heap(ovldpes.begin(), ovldpes.end(), PeLdGreater(counts));
}
sort(unldpes.begin(), unldpes.end(), PeLdLesser(counts));
break;
}
}
//CkPrintf("[%d] Afterwards is the maxLoadedPe with ld %f\n", ovldpes.front(), counts[ovldpes.front()]);
delete[] counts;
delete[] tmpcounts;
}
// Refinement strategy to distribute the TreePieces across PEs
void MultistepNodeLB_notopo::balanceTPs(BaseLB::LDStats* stats) {
double* counts = new double[stats->nprocs()];
memset(counts, 0.0, stats->nprocs() * sizeof(double));
double totalld = 0.0;
vector<vector<int> > objpemap;
objpemap.resize(stats->nprocs());
for (int i = 0; i < stats->objData.size(); i++) {
if(!stats->objData[i].migratable) continue;
counts[stats->to_proc[i]] += stats->objData[i].wallTime;
totalld += stats->objData[i].wallTime;
objpemap[stats->to_proc[i]].push_back(i);
}
double avgldperpe = totalld / stats->nprocs();
vector<int> unldpes;
vector<int> ovldpes;
double th = 1.05;
double unth = 0.9;
for (int i = (stats->nprocs()-1); i >= 0; i--) {
if (counts[i] > th*avgldperpe) {
ovldpes.push_back(i);
} else if (counts[i] < (unth*avgldperpe)) {
unldpes.push_back(i);
}
}
if (ovldpes.size() == 0 || unldpes.size() == 0) {
CkPrintf("No underloaded or overloaded PE\n");
return;
}
// make a max heap
make_heap(ovldpes.begin(), ovldpes.end(), PeLdGreater(counts));
sort(unldpes.begin(), unldpes.end(), PeLdLesser(counts));
int undcount = 0;
//CkPrintf("[%d] is the maxLoadedPe with ld %f ovlded %d unldpes %d\n", ovldpes.front(), counts[ovldpes.front()], ovldpes.size(), unldpes.size());
//CkPrintf("[%d] is the minLoadedPe with ld %f\n", unldpes.front(), counts[unldpes.front()]);
int* tmpcounts = new int[stats->nprocs()];
memcpy(tmpcounts, counts, stats->nprocs() * sizeof(int));
while (undcount < unldpes.size() && ovldpes.size() > 0) {
int ovlpe = ovldpes.front();
pop_heap(ovldpes.begin(), ovldpes.end(), PeLdGreater(counts));
ovldpes.pop_back();
if (ovlpe >= stats->nprocs()) {
CkPrintf("ovlpe %d stats count %lu\n", ovlpe, stats->nprocs());
CkAbort("ovle >= count\n");
}
for (int k = 0; k < objpemap[ovlpe].size() ; k++) {
int i = objpemap[ovlpe][k];
if (undcount > unldpes.size()) {
break;
}
int to_proc = stats->to_proc[i];
int n_proc = -1;
if (to_proc != ovlpe || !stats->objData[i].migratable) {
continue;
}
if (stats->objData[i].wallTime < 0.2) {
continue;
}
n_proc = unldpes[undcount];
if ((counts[n_proc] + stats->objData[i].wallTime) >= (counts[to_proc])) {
continue;
}
stats->to_proc[i] = n_proc;
counts[to_proc] = counts[to_proc] - stats->objData[i].wallTime;
counts[n_proc] = counts[n_proc] + stats->objData[i].wallTime;
objpemap[n_proc].push_back(i);
if (counts[n_proc] > unth*avgldperpe) {
undcount++;
}
if (counts[to_proc] > th*avgldperpe) {
ovldpes.push_back(ovlpe);
push_heap(ovldpes.begin(), ovldpes.end(), PeLdGreater(counts));
}
if (counts[n_proc] > th*avgldperpe) {
ovldpes.push_back(n_proc);
push_heap(ovldpes.begin(), ovldpes.end(), PeLdGreater(counts));
}
sort(unldpes.begin(), unldpes.end(), PeLdLesser(counts));
break;
}
}
//CkPrintf("[%d] Afterwards is the maxLoadedPe with ld %f\n", ovldpes.front(), counts[ovldpes.front()]);
delete[] counts;
delete[] tmpcounts;
}
void MultistepNodeLB_notopo::pup(PUP::er &p){
CBase_MultistepNodeLB_notopo::pup(p);
}
#include "MultistepNodeLB_notopo.def.h"