Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add asv benchmark code #784

Merged
merged 19 commits into from
Nov 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -47,3 +47,5 @@ _version.py

# other
node_modules/

.asv/
203 changes: 203 additions & 0 deletions asv.conf.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,203 @@
{
// The version of the config file format. Do not change, unless
// you know what you are doing.
"version": 1,

// The name of the project being benchmarked
"project": "spatialdata",

// The project's homepage
"project_url": "https://spatialdata.scverse.org/",

// The URL or local path of the source code repository for the
// project being benchmarked
"repo": ".",

// The Python project's subdirectory in your repo. If missing or
// the empty string, the project is assumed to be located at the root
// of the repository.
// "repo_subdir": "",

// Customizable commands for building the project.
// See asv.conf.json documentation.
// To build the package using pyproject.toml (PEP518), uncomment the following lines
// "build_command": [
// "python -m pip install build",
// "python -m build",
// "python -mpip wheel -w {build_cache_dir} {build_dir}"
// ],
// To build the package using setuptools and a setup.py file, uncomment the following lines
// "build_command": [
// "python setup.py build",
// "python -mpip wheel -w {build_cache_dir} {build_dir}"
// ],
"build_command": ["python -V"], // skip build stage

// Customizable commands for installing and uninstalling the project.
// See asv.conf.json documentation.
// "install_command": ["in-dir={env_dir} python -mpip install {wheel_file}"],
// "uninstall_command": ["return-code=any python -mpip uninstall -y {project}"],

// Install using default install
"install_command": [
"in-dir={env_dir} python -m pip install {build_dir}[test]"
],
"uninstall_command": [
"in-dir={env_dir} python -m pip uninstall -y {project}"
],

// List of branches to benchmark. If not provided, defaults to "main"
// (for git) or "default" (for mercurial).
"branches": ["main"], // for git
// "branches": ["default"], // for mercurial

// The DVCS being used. If not set, it will be automatically
// determined from "repo" by looking at the protocol in the URL
// (if remote), or by looking for special directories, such as
// ".git" (if local).
// "dvcs": "git",

// The tool to use to create environments. May be "conda",
// "virtualenv", "mamba" (above 3.8)
// or other value depending on the plugins in use.
// If missing or the empty string, the tool will be automatically
// determined by looking for tools on the PATH environment
// variable.
"environment_type": "virtualenv",

// timeout in seconds for installing any dependencies in environment
// defaults to 10 min
// "install_timeout": 600,

// the base URL to show a commit for the project.
// "show_commit_url": "http://github.com/owner/project/commit/",

// The Pythons you'd like to test against. If not provided, defaults
// to the current version of Python used to run `asv`.
"pythons": ["3.12"],

// The list of conda channel names to be searched for benchmark
// dependency packages in the specified order
// "conda_channels": ["conda-forge", "defaults"],

// A conda environment file that is used for environment creation.
// "conda_environment_file": "environment.yml",

// The matrix of dependencies to test. Each key of the "req"
// requirements dictionary is the name of a package (in PyPI) and
// the values are version numbers. An empty list or empty string
// indicates to just test against the default (latest)
// version. null indicates that the package is to not be
// installed. If the package to be tested is only available from
// PyPi, and the 'environment_type' is conda, then you can preface
// the package name by 'pip+', and the package will be installed
// via pip (with all the conda available packages installed first,
// followed by the pip installed packages).
//
// The ``@env`` and ``@env_nobuild`` keys contain the matrix of
// environment variables to pass to build and benchmark commands.
// An environment will be created for every combination of the
// cartesian product of the "@env" variables in this matrix.
// Variables in "@env_nobuild" will be passed to every environment
// during the benchmark phase, but will not trigger creation of
// new environments. A value of ``null`` means that the variable
// will not be set for the current combination.
//
// "matrix": {
// "req": {
// "numpy": ["1.6", "1.7"],
// "six": ["", null], // test with and without six installed
// "pip+emcee": [""] // emcee is only available for install with pip.
// },
// "env": {"ENV_VAR_1": ["val1", "val2"]},
// "env_nobuild": {"ENV_VAR_2": ["val3", null]},
// },

// Combinations of libraries/python versions can be excluded/included
// from the set to test. Each entry is a dictionary containing additional
// key-value pairs to include/exclude.
//
// An exclude entry excludes entries where all values match. The
// values are regexps that should match the whole string.
//
// An include entry adds an environment. Only the packages listed
// are installed. The 'python' key is required. The exclude rules
// do not apply to includes.
//
// In addition to package names, the following keys are available:
//
// - python
// Python version, as in the *pythons* variable above.
// - environment_type
// Environment type, as above.
// - sys_platform
// Platform, as in sys.platform. Possible values for the common
// cases: 'linux2', 'win32', 'cygwin', 'darwin'.
// - req
// Required packages
// - env
// Environment variables
// - env_nobuild
// Non-build environment variables
//
// "exclude": [
// {"python": "3.2", "sys_platform": "win32"}, // skip py3.2 on windows
// {"environment_type": "conda", "req": {"six": null}}, // don't run without six on conda
// {"env": {"ENV_VAR_1": "val2"}}, // skip val2 for ENV_VAR_1
// ],
//
// "include": [
// // additional env for python3.12
// {"python": "3.12", "req": {"numpy": "1.26"}, "env_nobuild": {"FOO": "123"}},
// // additional env if run on windows+conda
// {"platform": "win32", "environment_type": "conda", "python": "3.12", "req": {"libpython": ""}},
// ],

// The directory (relative to the current directory) that benchmarks are
// stored in. If not provided, defaults to "benchmarks"
// "benchmark_dir": "benchmarks",

// The directory (relative to the current directory) to cache the Python
// environments in. If not provided, defaults to "env"
"env_dir": ".asv/env",

// The directory (relative to the current directory) that raw benchmark
// results are stored in. If not provided, defaults to "results".
"results_dir": ".asv/results",

// The directory (relative to the current directory) that the html tree
// should be written to. If not provided, defaults to "html".
"html_dir": ".asv/html",

// The number of characters to retain in the commit hashes.
"hash_length": 8,

// `asv` will cache results of the recent builds in each
// environment, making them faster to install next time. This is
// the number of builds to keep, per environment.
"build_cache_size": 2

// The commits after which the regression search in `asv publish`
// should start looking for regressions. Dictionary whose keys are
// regexps matching to benchmark names, and values corresponding to
// the commit (exclusive) after which to start looking for
// regressions. The default is to start from the first commit
// with results. If the commit is `null`, regression detection is
// skipped for the matching benchmark.
//
// "regressions_first_commits": {
// "some_benchmark": "352cdf", // Consider regressions only after this commit
// "another_benchmark": null, // Skip regression detection altogether
// },

// The thresholds for relative change in results, after which `asv
// publish` starts reporting regressions. Dictionary of the same
// form as in ``regressions_first_commits``, with values
// indicating the thresholds. If multiple entries match, the
// maximum is taken. If no entry matches, the default is 5%.
//
// "regressions_thresholds": {
// "some_benchmark": 0.01, // Threshold of 1%
// "another_benchmark": 0.5, // Threshold of 50%
// },
}
75 changes: 75 additions & 0 deletions benchmarks/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
# Benchmarking SpatialData code

This `benchmarks/` folder contains code to benchmark the performance of the SpatialData code. You can use it to see how code behaves for different options or data sizes. For more information, check the [SpatialData Contributing Guide](https://spatialdata.scverse.org/en/stable/contributing.html).

Note that to run code, your current working directory should be the SpatialData repo, not this `benchmarks/` folder.

## Installation

The benchmarks use the [airspeed velocity](https://asv.readthedocs.io/en/stable/) (asv) framework. Install it with the `benchmark` option:

```
pip install -e '.[docs,test,benchmark]'
```

## Usage

Running all the benchmarks is usually not needed. You run the benchmark using `asv run`. See the [asv documentation](https://asv.readthedocs.io/en/stable/commands.html#asv-run) for interesting arguments, like selecting the benchmarks you're interested in by providing a regex pattern `-b` or `--bench` that links to a function or class method e.g. the option `-b timeraw_import_inspect` selects the function `timeraw_import_inspect` in `benchmarks/spatialdata_benchmark.py`. You can run the benchmark in your current environment with `--python=same`. Some example benchmarks:

Importing the SpatialData library can take around 4 seconds:

```
PYTHONWARNINGS="ignore" asv run --python=same --show-stderr -b timeraw_import_inspect
LucaMarconato marked this conversation as resolved.
Show resolved Hide resolved
Couldn't load asv.plugins._mamba_helpers because
No module named 'conda'
· Discovering benchmarks
· Running 1 total benchmarks (1 commits * 1 environments * 1 benchmarks)
[ 0.00%] ·· Benchmarking existing-py_opt_homebrew_Caskroom_mambaforge_base_envs_spatialdata2_bin_python3.12
[50.00%] ··· Running (spatialdata_benchmark.timeraw_import_inspect--).
[100.00%] ··· spatialdata_benchmark.timeraw_import_inspect 3.65±0.2s
```

Querying using a bounding box without a spatial index is highly impacted by large amounts of points (transcripts), more than table rows (cells).

```
$ PYTHONWARNINGS="ignore" asv run --python=same --show-stderr -b time_query_bounding_box

[100.00%] ··· ======== ============ ============= ============= ==============
-- filter_table / n_transcripts_per_cell
-------- -------------------------------------------------------
length True / 100 True / 1000 False / 100 False / 1000
======== ============ ============= ============= ==============
100 177±5ms 195±4ms 168±0.5ms 186±2ms
1000 195±3ms 402±2ms 187±3ms 374±4ms
10000 722±3ms 2.65±0.01s 389±3ms 2.22±0.02s
======== ============ ============= ============= ==============
```

You can use `asv` to run all the benchmarks in their own environment. This can take a long time, so it is not recommended for regular use:

```
$ asv run
Couldn't load asv.plugins._mamba_helpers because
No module named 'conda'
· Creating environments....
· Discovering benchmarks..
·· Uninstalling from virtualenv-py3.12
·· Building a89d16d8 <v0.2.6-pre0~7> for virtualenv-py3.12
·· Installing a89d16d8 <v0.2.6-pre0~7> into virtualenv-py3.12.............
· Running 6 total benchmarks (1 commits * 1 environments * 6 benchmarks)
[ 0.00%] · For spatialdata commit a89d16d8 <v0.2.6-pre0~7>:
[ 0.00%] ·· Benchmarking virtualenv-py3.12
[25.00%] ··· Running (spatialdata_benchmark.TimeMapRaster.time_map_blocks--)...
...
[100.00%] ··· spatialdata_benchmark.timeraw_import_inspect 3.33±0.06s
```

## Notes

When using PyCharm, remember to set [Configuration](https://www.jetbrains.com/help/pycharm/run-debug-configuration.html) to include the benchmark module, as this is separate from the main code module.

In Python, you can run a module using the following command:

```
python -m benchmarks.spatialdata_benchmark
```
Empty file added benchmarks/__init__.py
Empty file.
75 changes: 75 additions & 0 deletions benchmarks/spatialdata_benchmark.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
# type: ignore

# Write the benchmarking functions here.
# See "Writing benchmarks" in the asv docs for more information.
import spatialdata as sd

from .utils import cluster_blobs
LucaMarconato marked this conversation as resolved.
Show resolved Hide resolved


class MemorySpatialData:
# TODO: see what the memory overhead is e.g. Python interpreter...
"""Calculate the peak memory usage is for artificial datasets with increasing channels."""

def peakmem_list(self):
sdata: sd.SpatialData = sd.datasets.blobs(n_channels=1)
return sdata

def peakmem_list2(self):
sdata: sd.SpatialData = sd.datasets.blobs(n_channels=2)
return sdata


def timeraw_import_inspect():
LucaMarconato marked this conversation as resolved.
Show resolved Hide resolved
"""Time the import of the spatialdata module."""
return """
import spatialdata
"""


class TimeMapRaster:
"""Time the."""

params = [100, 1000, 10_000]
param_names = ["length"]

def setup(self, length):
self.sdata = cluster_blobs(length=length)

def teardown(self, _):
del self.sdata

def time_map_blocks(self, _):
sd.map_raster(self.sdata["blobs_image"], lambda x: x + 1)


class TimeQueries:

params = ([100, 1_000, 10_000], [True, False], [100, 1_000])
param_names = ["length", "filter_table", "n_transcripts_per_cell"]

def setup(self, length, filter_table, n_transcripts_per_cell):
import shapely

self.sdata = cluster_blobs(length=length, n_transcripts_per_cell=n_transcripts_per_cell)
self.polygon = shapely.box(0, 0, length // 2, length // 2)

def teardown(self, length, filter_table, n_transcripts_per_cell):
del self.sdata

def time_query_bounding_box(self, length, filter_table, n_transcripts_per_cell):
self.sdata.query.bounding_box(
axes=["x", "y"],
min_coordinate=[0, 0],
max_coordinate=[length // 2, length // 2],
target_coordinate_system="global",
filter_table=filter_table,
)

def time_query_polygon_box(self, length, filter_table, n_transcripts_per_cell):
sd.polygon_query(
self.sdata,
self.polygon,
target_coordinate_system="global",
filter_table=filter_table,
)
Loading
Loading