Paper (CVPR 2023) | Project Page | Video
Xiaomeng Xu, Yanchao Yang, Kaichun Mo, Boxiao Pan, Li Yi, Leonidas Guibas
Main python dependencies are listed below:
- python>=3.8
- torch>=1.12.0
- cudatoolkit>=11.3
Requirements are listed in requirements.txt
We mainly use Replica and ScanNet datasets for experiments, where we train a plain NeRF model and Jacobi-NeRF model on each 3D scene.
We also use pre-rendered Replica data provided by Semantic-NeRF.
Extract per-pixel DINO feature from training images first. We use dino_vits8, layer 11 to create descriptors from. Please download the code of the DINO repo and run:
python extractor.py --model dino_vits8 --load_size 360 --image_path [image_path] --output_path [dino_path]
You can add a simple for loop in the DINO repo to extract DINO features for all images at once.
Set dataset_dir
in config_file./configs/replica_room0_config.yaml)
, structured as follows.
dataset_dir
├── rgb # RGB images
├── semantic_class # ground truth semantic segmentation labels
├── dino # DINO features
├── traj_w_c.txt # camera parameters
└── ...
- Set
N_iters
in config_file./configs/replica_room0_config.yaml
as 200000.
python main.py --config_file ./configs/replica_room0_config.yaml --save_dir [save_dir] --training_mode
- Set
N_iters
in config_file./configs/replica_room0_config.yaml
as 10000.
python main.py --config_file ./configs/replica_room0_config.yaml --load_dino --load_on_cpu --feature_dim 384 --save_dir [save dir] --ckpt_path [plain nerf ckpt path] --contrastive_2d --contrastive_starting_step 0 --contrastive_step 1 --wgt_img 1 --wgt_contrastive 1e-2 --wgt_gradient 1e-2 --rgb_layer --pos_threshold 0.8 --neg_threshold 0.8 --adaptive_threshold --gt_feature_sim --gradient_norm_loss --N_rays 64 --contrastive_abs --training_mode
- sparse setting
python main.py --config_file ./configs/replica_room0_config.yaml --sparse_views --sparse_ratio 0.995 --label_propagation --partial_perc 0 --load_saved --propagate_3d --ckpt_path [J-NeRF ckpt path] --save_dir [save_dir] --rgb_layer --mean_gradient
- dense setting
python main.py --config_file ./configs/replica_room0_config.yaml --sparse_views --sparse_ratio 0.995 --propagate_3d --ckpt_path [J-NeRF ckpt path] --save_dir [save_dir] --rgb_layer --adaptive_selection --num_comb 20 --num_iters 5 --train_agg
- sparse setting
python main.py --config_file ./configs/replica_room0_config.yaml --sparse_views --sparse_ratio 0.995 --label_propagation --partial_perc 0 --load_saved --propagate_2d --ckpt_path [J-NeRF ckpt path] --save_dir [save_dir] --rgb_layer --mean_gradient
- dense setting
python main.py --config_file ./configs/replica_room0_config.yaml --sparse_views --sparse_ratio 0.995 --propagate_2d --ckpt_path [J-NeRF ckpt path] --save_dir [save_dir] --rgb_layer --adaptive_selection --num_comb 20 --num_iters 5 --train_agg
Thanks nerf, nerf-pytorch and Semantic-NeRF for nice implementation of NeRF and scripts in processing datasets.
If you find JacobiNeRF useful for your work, please cite:
@inproceedings{xu2023jacobinerf,
title={JacobiNeRF: NeRF Shaping with Mutual Information Gradients},
author={Xu, Xiaomeng and Yang, Yanchao and Mo, Kaichun and Pan, Boxiao and Yi, Li and Guibas, Leonidas},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={16498--16507},
year={2023}
}
If you have any questions, please contact [email protected].