Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Hardware][Intel-Gaudi] Enable LoRA support for Intel Gaudi (HPU) #10565

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 19 additions & 4 deletions vllm/lora/layers.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,10 @@
LinearScalingRotaryEmbedding, RotaryEmbedding)
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.platforms import current_platform

if current_platform.is_hpu():
from vllm_hpu_extension.punica_hpu import GaudiPunicaWrapper

if TYPE_CHECKING:
pass
Expand Down Expand Up @@ -308,10 +312,19 @@ def forward(self, x: torch.Tensor) -> torch.Tensor:
)

# Embedding layer only need expand op
self.punica_wrapper.add_expand(full_output,
full_lora_a_embeddings,
self.lora_b_stacked,
add_input=True)
if current_platform.is_hpu():
assert isinstance(self.punica_wrapper, GaudiPunicaWrapper)
# HPU handles LoRA-B multiplication differently when compared to
# `PunicaWrapper.add_expand`
self.punica_wrapper.add_lora_embedding(full_output,
full_lora_a_embeddings,
self.lora_b_stacked,
add_input=True)
else:
self.punica_wrapper.add_expand(full_output,
full_lora_a_embeddings,
self.lora_b_stacked,
add_input=True)
return full_output.view_as(full_output_org)

@classmethod
Expand Down Expand Up @@ -1491,6 +1504,8 @@ def _get_logits(
).index_select(0, indices_padded).nan_to_num_(nan=float("-inf"),
posinf=float("inf"),
neginf=float("-inf")))
if current_platform.is_hpu():
lora_logits = lora_logits[:logits.shape[0], :]
logits[:,
self.base_layer.org_vocab_size:self.base_layer.org_vocab_size +
lora_logits.shape[1]] = lora_logits
Expand Down
15 changes: 12 additions & 3 deletions vllm/lora/models.py
Original file line number Diff line number Diff line change
Expand Up @@ -331,9 +331,18 @@ def __init__(
self.lora_index_to_id: List[Optional[int]] = [None] * self.lora_slots
self.vocab_size = vocab_size
self.long_lora_context: Optional[LongContextLoRAContext] = None
self.punica_wrapper = PunicaWrapper(max_num_batched_tokens,
max_batches=self.max_num_seqs,
device=self.device)
if self.device == torch.device("hpu"):
# Increasing max_num_batched_tokens by 3x to handle increase in
# tensor size due to padding.
from vllm_hpu_extension.punica_hpu import GaudiPunicaWrapper
self.punica_wrapper = GaudiPunicaWrapper(
3 * max_num_batched_tokens,
max_batches=self.max_num_seqs,
device=self.device)
else:
self.punica_wrapper = PunicaWrapper(max_num_batched_tokens,
max_batches=self.max_num_seqs,
device=self.device)
# Scaling factor -> offset to the sin_cos_cache to it.
# Used for long context lora.
self.scaling_factor_to_offset: Dict[float, int] = {}
Expand Down
17 changes: 4 additions & 13 deletions vllm/worker/hpu_model_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -1282,11 +1282,9 @@ def create_dummy_seq_group_metadata(self,
def profile_run(self) -> None:
num_layers = self.model_config.get_num_layers(self.parallel_config)
kv_caches = [None] * num_layers
max_batch_size = self.bucketing_global_state.prompt_bs_bucket_cfg[-1]
max_seq_len = min(
self.bucketing_global_state.prompt_seq_bucket_cfg[-1],
self.max_num_batched_tokens // max_batch_size)

max_seq_len = self.bucketing_global_state.prompt_seq_bucket_cfg[-1]
max_batch_size = min(self.max_num_batched_tokens // max_seq_len,
self.scheduler_config.max_num_seqs)
self.warmup_scenario(max_batch_size, max_seq_len, True, kv_caches,
False, True)
return
Expand All @@ -1304,7 +1302,6 @@ def warmup_scenario(self,
f"bs{batch_size}_"
f"seq{seq_len}_"
f"graphs{'T' if use_graphs else 'F'}")
max_num_seqs = self.scheduler_config.max_num_seqs
# This represents the maximum number of different requests
# that will have unique loras, an therefore the max amount of memory
# consumption create dummy lora request copies from the lora request
Expand All @@ -1326,16 +1323,10 @@ def warmup_scenario(self,
dummy_lora_requests.append(dummy_lora_request)
dummy_lora_requests_per_seq = [
dummy_lora_requests[idx % len(dummy_lora_requests)]
for idx in range(max_num_seqs)
for idx in range(batch_size)
]
self.profiler.start('internal', scenario_name)
times = 3 if use_graphs or is_pt_profiler_run else 1
if self.lora_config and not is_lora_profile_run:
lora_mapping = LoRAMapping(
**dict(index_mapping=[0] * batch_size * seq_len,
prompt_mapping=[0] * batch_size * seq_len,
is_prefill=is_prompt))
self.set_active_loras(set(), lora_mapping)
if is_prompt:
seqs = [
self.create_dummy_seq_group_metadata(
Expand Down