Skip to content

A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Notifications You must be signed in to change notification settings

ver217/imagenet-tools

Repository files navigation

Overview

This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Make TFRecords

To run the script setup a virtualenv with the following libraries installed.

  • tensorflow: Install with pip install tensorflow

Once you have all the above libraries setup, you should register on the Imagenet website and download the ImageNet .tar files. It should be extracted and provided in the format:

  • Training images: train/n03062245/n03062245_4620.JPEG
  • Validation Images: validation/ILSVRC2012_val_00000001.JPEG

To run the script to preprocess the raw dataset as TFRecords, run the following command:

python3 make_tfrecords.py \
  --raw_data_dir="path/to/imagenet" \
  --local_scratch_dir="path/to/output"

Note that the label is from 1 to 1000.

Make index files

To run the script setup a virtualenv with the following libraries installed.

python3 make_idx.py --tfrecord_root="path/to/tfrecords"

Build subset of Imagenet-1K

This can help you build a subset of Imagenet-1K (TFRecord format):

python3 build_subset.py "path/to/tfrecords" "output_dir" \
  --train_num_shards=128 \
  --valid_num_shards=16 \
  --num_classes=100

Classes are selected randomly.

DALI dataloader

We also provide a DALI dataloader which can read the processed dataset. The dataloader is equipped with Mixup.

Here is an simple example to construct it:

import glob
import os


def build_dali_train(root):
    train_pat = os.path.join(root, 'train/*')
    train_idx_pat = os.path.join(root, 'idx_files/train/*')
    return DaliDataloader(
        sorted(glob.glob(train_pat)),
        sorted(glob.glob(train_idx_pat)),
        batch_size=BATCH_SIZE,
        shard_id=SHARD_ID,
        num_shards=NUM_SHARDS,
        training=True,
        gpu_aug=True,
        cuda=True,
        mixup_alpha=0.0,
        num_threads=16,
    )

About

A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages