NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥
-
Updated
Aug 8, 2024 - Python
NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥
🍅 Deploy ncnn on mobile phones. Support Android and iOS. 移动端ncnn部署,支持Android与iOS。
awesome AI models with NCNN, and how they were converted ✨✨✨
Deploy nanodet, the super fast and lightweight object detection, in your web browser with ncnn and webassembly
用opencv部署nanodet目标检测,包含C++和Python两种版本程序的实现
QuarkDet lightweight object detection in PyTorch .Real-Time Object Detection on Mobile Devices.
Tracking-by-Detection形式のMOT(Multi Object Tracking)について、 DetectionとTrackingの処理を分離して寄せ集めたフレームワーク(Tracking-by-Detection method MOT(Multi Object Tracking) is a framework that separates the processing of Detection and Tracking.)
NanoDet: Tiny Object Detection for TFJS and NodeJS
A collection of some awesome public Anchor-Free object detection series projects.
🍅🍅NanoDet、NanoDet-Plus with ONNXRuntime/MNN/TNN/NCNN C++. (https://github.com/DefTruth/lite.ai.toolkit)
NanoDet for a bare Raspberry Pi 4
NanoDetをGoogle Colaboratory上で訓練しONNX形式のファイルをエクスポートするサンプル(This is a sample to training NanoDet on Google Colaboratory and export a file in ONNX format)
NanoDetのPythonでのONNX推論サンプル
docker images for training, mining and infer for ymir
Add a description, image, and links to the nanodet topic page so that developers can more easily learn about it.
To associate your repository with the nanodet topic, visit your repo's landing page and select "manage topics."