Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bugfix cec2019, cec2020 functions. #18

Merged
merged 1 commit into from
Sep 18, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion opfunu/cec_based/cec.py
Original file line number Diff line number Diff line change
Expand Up @@ -173,7 +173,7 @@ def check_solution(self, x, dim_max=None, dim_support=None):
"""
# if not self.dim_changeable and (len(x) != self._ndim):
if len(x) != self._ndim:
raise ValueError(f"{self.__class__.__name__} problem, the length of solution should has {self._ndim} variables!")
raise ValueError(f"{self.__class__.__name__} problem, the length of solution should have {self._ndim} variables!")
if (dim_max is not None) and (len(x) > dim_max):
raise ValueError(f"{self.__class__.__name__} problem is not supported ndim > {dim_max}!")
if (dim_support is not None) and (len(x) not in dim_support):
Expand Down
22 changes: 13 additions & 9 deletions opfunu/cec_based/cec2019.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,13 +49,13 @@ def __init__(self, ndim=None, bounds=None, f_shift="shift_data_1", f_bias=1.):
self.f_shift = self.check_shift_data(f_shift)[:self.ndim]
self.f_bias = f_bias
self.f_global = f_bias
self.x_global = self.f_shift
self.x_global = np.zeros(self.ndim)
self.paras = {"f_shift": self.f_shift, "f_bias": self.f_bias}

def evaluate(self, x, *args):
self.n_fe += 1
self.check_solution(x, self.dim_max, self.dim_supported)
return operator.storn_chebyshev_polynomial_fitting_func(x) + self.f_bias
return operator.chebyshev_func(x) + self.f_bias


class F22019(CecBenchmark):
Expand Down Expand Up @@ -97,20 +97,23 @@ def __init__(self, ndim=None, bounds=None, f_shift="shift_data_2", f_bias=1.):
self.make_support_data_path("data_2019")
self.f_shift = self.check_shift_data(f_shift)[:self.ndim]
self.f_bias = f_bias
self.f_global = f_bias
self.x_global = self.f_shift
# the f_global and x_global was obtained by executing the cec2019 c code
self.f_global = int(np.sqrt(self.ndim)) + f_bias
self.x_global = np.zeros(self.ndim)
self.paras = {"f_shift": self.f_shift, "f_bias": self.f_bias}

def evaluate(self, x, *args):
self.n_fe += 1
self.check_solution(x, self.dim_max, self.dim_supported)
return operator.inverse_hilbert_matrix_func(x) + self.f_bias
return operator.inverse_hilbert_func(x) + self.f_bias


class F32019(CecBenchmark):
"""
.. [1] The 100-Digit Challenge: Problem Definitions and Evaluation Criteria for the 100-Digit
Challenge Special Session and Competition on Single Objective Numerical Optimization

**Note: The CEC 2019 implementation and this implementation results match when x* = [0,...,0] and
"""
name = "F3: Lennard-Jones Minimum Energy Cluster Problem"
latex_formula = r'F_1(x) = \sum_{i=1}^D z_i^2 + bias, z=x-o,\\ x=[x_1, ..., x_D]; o=[o_1, ..., o_D]: \text{the shifted global optimum}'
Expand Down Expand Up @@ -146,14 +149,15 @@ def __init__(self, ndim=None, bounds=None, f_shift="shift_data_3", f_bias=1.):
self.make_support_data_path("data_2019")
self.f_shift = self.check_shift_data(f_shift)[:self.ndim]
self.f_bias = f_bias
self.f_global = f_bias
# f_global calculated by verifying the cec2019 C value for f(x*) where x*==f_shift
self.f_global = 12.712062001703194 + self.f_bias
self.x_global = self.f_shift
self.paras = {"f_shift": self.f_shift, "f_bias": self.f_bias}

def evaluate(self, x, *args):
self.n_fe += 1
self.check_solution(x, self.dim_max, self.dim_supported)
return operator.lennard_jones_minimum_energy_cluster_func(x) + self.f_bias
return operator.lennard_jones_func(x) + self.f_bias
thieu1995 marked this conversation as resolved.
Show resolved Hide resolved


class F42019(CecBenchmark):
Expand Down Expand Up @@ -257,7 +261,7 @@ def evaluate(self, x, *args):
self.n_fe += 1
self.check_solution(x, self.dim_max, self.dim_supported)
z = np.dot(self.f_matrix, x - self.f_shift)
return operator.weierstrass_func(z) + self.f_bias
return operator.weierstrass_norm_func(z) + self.f_bias


class F72019(F42019):
Expand Down Expand Up @@ -335,7 +339,7 @@ def evaluate(self, x, *args):
self.n_fe += 1
self.check_solution(x, self.dim_max, self.dim_supported)
z = np.dot(self.f_matrix, x - self.f_shift)
return operator.happy_cat_func(z) + self.f_bias
return operator.happy_cat_func(z, shift=-1.0) + self.f_bias


class F102019(F42019):
Expand Down
29 changes: 13 additions & 16 deletions opfunu/cec_based/cec2020.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,7 +110,7 @@ def evaluate(self, x, *args):
self.n_fe += 1
self.check_solution(x, self.dim_max, self.dim_supported)
z = np.dot(self.f_matrix, 1000.*(x - self.f_shift)/100)
return operator.bent_cigar_func(z) + self.f_bias
return operator.modified_schwefel_func(z) + self.f_bias


class F32020(CecBenchmark):
Expand Down Expand Up @@ -162,15 +162,15 @@ def evaluate(self, x, *args):
self.n_fe += 1
self.check_solution(x, self.dim_max, self.dim_supported)
z = np.dot(self.f_matrix, 600.*(x - self.f_shift)/100)
return operator.bent_cigar_func(z) + self.f_bias
return operator.lunacek_bi_rastrigin_func(z, shift=2.5) + self.f_bias


class F42020(CecBenchmark):
"""
.. [1] Problem Definitions and Evaluation Criteria for the CEC 2020
Special Session and Competition on Single Objective Bound Constrained Numerical Optimization
"""
name = "F4: Expanded Rosenbrock’s plus Griewangk’s Function (F15 CEC-2014)"
name = "F4: Expanded Rosenbrock’s plus Griewank’s Function (F15 CEC-2014)"
latex_formula = r'F_1(x) = \sum_{i=1}^D z_i^2 + bias, z=x-o,\\ x=[x_1, ..., x_D]; o=[o_1, ..., o_D]: \text{the shifted global optimum}'
latex_formula_dimension = r'2 <= D <= 100'
latex_formula_bounds = r'x_i \in [-100.0, 100.0], \forall i \in [1, D]'
Expand Down Expand Up @@ -213,7 +213,7 @@ def __init__(self, ndim=None, bounds=None, f_shift="shift_data_4", f_matrix="M_4
def evaluate(self, x, *args):
self.n_fe += 1
self.check_solution(x, self.dim_max, self.dim_supported)
z = np.dot(self.f_matrix, 5. * (x - self.f_shift) / 100) + 1
z = np.dot(self.f_matrix, 5. * (x - self.f_shift) / 100)
return operator.expanded_griewank_rosenbrock_func(z) + self.f_bias


Expand Down Expand Up @@ -333,17 +333,16 @@ def __init__(self, ndim=None, bounds=None, f_shift="shift_data_7", f_matrix="M_7
self.n3 = int(np.ceil(self.p[2] * self.ndim)) + self.n2
self.idx1, self.idx2 = self.f_shuffle[:self.n1], self.f_shuffle[self.n1:self.n2]
self.idx3, self.idx4 = self.f_shuffle[self.n2:self.n3], self.f_shuffle[self.n3:self.ndim]
self.g1 = operator.expanded_scaffer_f6_func
self.g2 = operator.hgbat_func
self.g3 = operator.rosenbrock_func
self.g4 = operator.modified_schwefel_func
self.paras = {"f_shift": self.f_shift, "f_bias": self.f_bias, "f_matrix": self.f_matrix, "f_shuffle": self.f_shuffle}

def evaluate(self, x, *args):
self.n_fe += 1
self.check_solution(x, self.dim_max, self.dim_supported)
mz = np.dot(self.f_matrix, x - self.f_shift)
return self.g1(mz[self.idx1]) + self.g2(mz[self.idx2]) + self.g3(mz[self.idx3]) + self.g4(mz[self.idx4]) + self.f_bias
return (operator.expanded_schaffer_f6_func(mz[self.idx1]) +
operator.hgbat_func(mz[self.idx2], shift=-1.0) +
operator.rosenbrock_func(mz[self.idx3], shift=1.0) +
operator.modified_schwefel_func(mz[self.idx4]) + self.f_bias)


class F72020(CecBenchmark):
Expand Down Expand Up @@ -399,11 +398,6 @@ def __init__(self, ndim=None, bounds=None, f_shift="shift_data_16", f_matrix="M_
self.n4 = int(np.ceil(self.p[3] * self.ndim)) + self.n3
self.idx1, self.idx2, self.idx3 = self.f_shuffle[:self.n1], self.f_shuffle[self.n1:self.n2], self.f_shuffle[self.n2:self.n3]
self.idx4, self.idx5 = self.f_shuffle[self.n3:self.n4], self.f_shuffle[self.n4:self.ndim]
self.g1 = operator.expanded_scaffer_f6_func
self.g2 = operator.hgbat_func
self.g3 = operator.rosenbrock_func
self.g4 = operator.modified_schwefel_func
self.g5 = operator.elliptic_func
self.paras = {"f_shift": self.f_shift, "f_bias": self.f_bias, "f_matrix": self.f_matrix, "f_shuffle": self.f_shuffle}

def evaluate(self, x, *args):
Expand All @@ -412,8 +406,11 @@ def evaluate(self, x, *args):
z = x - self.f_shift
z1 = np.concatenate((z[self.idx1], z[self.idx2], z[self.idx3], z[self.idx4], z[self.idx5]))
mz = np.dot(self.f_matrix, z1)
return self.g1(mz[:self.n1]) + self.g2(mz[self.n1:self.n2]) + self.g3(mz[self.n2:self.n3]) +\
self.g4(mz[self.n3:self.n4]) + self.g5(mz[self.n4:]) + self.f_bias
return (operator.expanded_scaffer_f6_func(mz[:self.n1]) +
operator.hgbat_func(mz[self.n1:self.n2], shift=-1.0) +
operator.rosenbrock_func(mz[self.n2:self.n3], shift=1.0) +
operator.modified_schwefel_func(mz[self.n3:self.n4]) +
operator.elliptic_func(mz[self.n4:]) + self.f_bias)


class F82020(CecBenchmark):
Expand Down
129 changes: 82 additions & 47 deletions opfunu/utils/operator.py
Original file line number Diff line number Diff line change
Expand Up @@ -341,8 +341,8 @@ def expanded_schaffer_f6_func(x):
f += 0.5 + (temp1_last - 0.5) / (temp2_last ** 2)

return f


def schaffer_f7_func(x):
x = np.array(x).ravel()
ndim = len(x)
Expand All @@ -353,58 +353,93 @@ def schaffer_f7_func(x):
return (result / (ndim - 1)) ** 2


def storn_chebyshev_polynomial_fitting_func(x, d=72.661):
def chebyshev_func(x):
"""
The following was converted from the cec2019 C code
Storn's Tchebychev - a 2nd ICEO function - generalized version
"""
x = np.array(x).ravel()
ndim = len(x)
m = 32 * ndim
j1 = np.arange(0, ndim)
upper = ndim - j1

u = np.sum(x * 1.2 ** upper)
v = np.sum(x * (-1.2) ** upper)
p1 = 0 if u >= d else (u - d) ** 2
p2 = 0 if v >= d else (v - d) ** 2

wk = np.array([np.sum(x * (2. * k / m - 1) ** upper) for k in range(0, m + 1)])
conditions = [wk < 1, (1 <= wk) & (wk <= 1), wk > 1]
t1 = (wk + 1) ** 2
t2 = np.zeros(len(wk))
t3 = (wk - 1) ** 2
choices = [t1, t2, t3]
pk = np.select(conditions, choices, default=np.nan)
p3 = np.sum(pk)
return p1 + p2 + p3


def inverse_hilbert_matrix_func(x):
sample = 32 * ndim

dx_arr = np.zeros(ndim)
dx_arr[:2] = [1.0, 1.2]
for i in range(2, ndim):
dx_arr[i] = 2.4 * dx_arr[i-1] - dx_arr[i-2]
dx = dx_arr[-1]

dy = 2.0 / sample

px, y, sum_val = 0, -1, 0
for i in range(sample + 1):
px = x[0]
for j in range(1, ndim):
px = y * px + x[j]
if px < -1 or px > 1:
sum_val += (1.0 - abs(px)) ** 2
y += dy

for _ in range(2):
px = np.sum(1.2 * x[1:]) + x[0]
mask = px < dx
sum_val += np.sum(px[mask] ** 2)

return sum_val


def inverse_hilbert_func(x):
"""
This is a direct conversion of the cec2019 C code for python optimized to use numpy
"""
x = np.array(x).ravel()
ndim = len(x)
n = int(np.sqrt(ndim))
I = np.identity(n)
H = np.zeros((n, n))
Z = np.zeros((n, n))
for i in range(0, n):
for k in range(0, n):
Z[i, k] = x[i + n * k]
H[i, k] = 1. / (i + k + 1)
W = np.matmul(H, Z) - I
return np.sum(W)


def lennard_jones_minimum_energy_cluster_func(x):
b = int(np.sqrt(ndim))

# Create the Hilbert matrix
i, j = np.indices((b, b))
hilbert = 1.0 / (i + j + 1)

# Reshape x and compute H*x
x = x.reshape((b, b))
y = np.dot(hilbert, x).dot(hilbert.T)

# Compute the absolute deviations
result = np.sum(np.abs(y - np.eye(b)))
return result


def lennard_jones_func(x):
"""
This version is a direct python conversion from the C-Code of CEC2019 implementation.
Find the atomic configuration with minimum energy (Lennard-Jones potential)
Valid for any dimension, D = 3 * k, k = 2, 3, 4, ..., 25.
k is the number of atoms in 3-D space.
"""
x = np.array(x).ravel()
ndim = len(x)
result = 12.7120622568
n_upper = int(ndim / 3)
for i in range(1, n_upper):
for j in range(i + 1, n_upper + 1):
idx1, idx2 = 3 * i, 3 * j
dij = ((x[idx1 - 3] - x[idx2 - 3]) ** 2 + (x[idx1 - 2] - x[idx2 - 2]) ** 2 + (x[idx1 - 1] - x[idx2 - 1]) ** 2) ** 3
if dij == 0:
result += 0
# Minima values from Cambridge cluster database: http://www-wales.ch.cam.ac.uk/~jon/structures/LJ/tables.150.html
minima = np.array([-1., -3., -6., -9.103852, -12.712062, -16.505384, -19.821489, -24.113360,
-28.422532, -32.765970, -37.967600, -44.326801, -47.845157, -52.322627, -56.815742,
-61.317995, -66.530949, -72.659782, -77.1777043, -81.684571, -86.809782, -02.844472,
-97.348815, -102.372663])

k = ndim // 3
sum_val = 0

x_matrix = x.reshape((k, 3))
for i in range(k-1):
for j in range(i + 1, k):
# Use slicing to get the differences between points i and j
diff = x_matrix[i] - x_matrix[j]
# Calculate the squared Euclidean distance
ed = np.sum(diff ** 2)
# Calculate ud and update sum_val accordingly
ud = ed ** 3
if ud > 1.0e-10:
sum_val += (1.0 / ud - 2.0) / ud
else:
result += (1. / dij ** 2 - 2. / dij)
return result
sum_val += 1.0e20 # cec2019 version penalizes when ud is <=1e-10
return sum_val - minima[k - 2] # Subtract known minima for k


expanded_griewank_rosenbrock_func = grie_rosen_cec_func
Expand Down
11 changes: 11 additions & 0 deletions tests/cec_based/test_cec2019.py
Original file line number Diff line number Diff line change
Expand Up @@ -146,3 +146,14 @@ def test_F102019_results():
assert len(problem.lb) == ndim
assert problem.bounds.shape[0] == ndim
assert len(problem.x_global) == ndim


def test_all_optimal_results():
known_failing = ['']
all_functions = [x for x in opfunu.get_all_cec_functions()
if x.__name__[-4:] == '2019' and x.__name__ not in known_failing]
for function in all_functions:
problem = function(10)
x = problem.x_global
result = problem.evaluate(x)
assert abs(result - problem.f_global) <= problem.epsilon, f'{function.__name__} Failed Optimal Test'
12 changes: 12 additions & 0 deletions tests/cec_based/test_cec2020.py
Original file line number Diff line number Diff line change
Expand Up @@ -146,3 +146,15 @@ def test_F102020_results():
assert len(problem.lb) == ndim
assert problem.bounds.shape[0] == ndim
assert len(problem.x_global) == ndim


def test_all_optimal_results():
ndim = 30
known_failing = []
all_functions = [x for x in opfunu.get_all_cec_functions()
if x.__name__[-4:] == '2020' and x.__name__ not in known_failing]
for function in all_functions:
problem = function(ndim=ndim)
x = problem.x_global
result = problem.evaluate(x)
assert abs(result - problem.f_global) <= problem.epsilon, f'{function.__name__} Failed Optimal Test'
Empty file added tests/utils/__init__.py
Empty file.
11 changes: 11 additions & 0 deletions tests/utils/test_operator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
import numpy as np
import opfunu
from opfunu.utils import operator


def test_lennard_jones_func_zero_result():
"""
The CEC2019 version when zero results in penalization of 1.0e20
"""
x = np.zeros(18)
assert abs(operator.lennard_jones_func(x) - 1.5e21) <= 1e-8
Loading