-
Notifications
You must be signed in to change notification settings - Fork 70
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Left and right lifts along a displayed cat. #343
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
@@ -3,16 +3,17 @@ | |||||||||||||
open import Cat.Displayed.Cartesian | ||||||||||||||
open import Cat.Functor.Equivalence | ||||||||||||||
open import Cat.Instances.Functor | ||||||||||||||
open import Cat.Instances.Product | ||||||||||||||
open import Cat.Displayed.Total | ||||||||||||||
open import Cat.Functor.Compose | ||||||||||||||
open import Cat.Displayed.Base | ||||||||||||||
open import Cat.Prelude | ||||||||||||||
|
||||||||||||||
import Cat.Displayed.Reasoning | ||||||||||||||
import Cat.Functor.Bifunctor as Bi | ||||||||||||||
import Cat.Reasoning | ||||||||||||||
``` | ||||||||||||||
--> | ||||||||||||||
|
||||||||||||||
```agda | ||||||||||||||
module Cat.Displayed.Instances.Lifting where | ||||||||||||||
``` | ||||||||||||||
|
@@ -22,6 +23,7 @@ module Cat.Displayed.Instances.Lifting where | |||||||||||||
open Functor | ||||||||||||||
open _=>_ | ||||||||||||||
open Total-hom | ||||||||||||||
|
||||||||||||||
``` | ||||||||||||||
--> | ||||||||||||||
|
||||||||||||||
|
@@ -142,6 +144,70 @@ higher level of strictness than usual. | |||||||||||||
ni .natural _ _ _ = id-comm | ||||||||||||||
``` | ||||||||||||||
|
||||||||||||||
The distinguished projection `πᶠ` has a canonical choice of lifting. | ||||||||||||||
Later, we will prove that for any functor $F$ valued in | ||||||||||||||
$\cE$, $\pi^f$ has a canonical choice of lifting; however, this later | ||||||||||||||
theorem cannot be applied here, as $\pi^f \circ \operatorname{id}_{\cE}$ | ||||||||||||||
is not definitionally equal to $\pi^f$. | ||||||||||||||
|
||||||||||||||
```agda | ||||||||||||||
module _ {o ℓ o' ℓ'} | ||||||||||||||
{B : Precategory o ℓ} | ||||||||||||||
(E : Displayed B o' ℓ') | ||||||||||||||
where | ||||||||||||||
open Cat.Reasoning B | ||||||||||||||
open Displayed E | ||||||||||||||
open Cat.Displayed.Reasoning E | ||||||||||||||
Comment on lines
+154
to
+160
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This should be hidden |
||||||||||||||
|
||||||||||||||
πᶠ-lifting : Lifting E (πᶠ E) | ||||||||||||||
πᶠ-lifting .Lifting.F₀' (_ , a) = a | ||||||||||||||
πᶠ-lifting .Lifting.F₁' f = preserves f | ||||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||||||||||
πᶠ-lifting .Lifting.F-id' = refl | ||||||||||||||
πᶠ-lifting .Lifting.F-∘' f g = refl | ||||||||||||||
``` | ||||||||||||||
|
||||||||||||||
Let $F: \cC\times \cD\to \cB$ be a functor and $\cE\liesover\cB$ a displayed category. Let $F' : \cC\times \cD\to \cE$ be a lift of $F$ along $F'$. We show that $F'(c-,)$ is a lift of $F(c,-)$ for any $c$, similarly $F'(-,d)$ is a lift of $F(-,d)$ for any $d$. | ||||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
Also this should be reflowed to fit in the 72-character width limit. |
||||||||||||||
|
||||||||||||||
```agda | ||||||||||||||
TOTBWF marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||||||||||
module Bifunctor {o₁ ℓ₁ o₂ ℓ₂ o₃ ℓ₃ o₄ ℓ₄} | ||||||||||||||
{B : Precategory o₁ ℓ₁} | ||||||||||||||
(E : Displayed B o₂ ℓ₂) | ||||||||||||||
(C : Precategory o₃ ℓ₃) | ||||||||||||||
(D : Precategory o₄ ℓ₄) | ||||||||||||||
(F : Functor (C ×ᶜ D) B) | ||||||||||||||
(F' : Lifting E F) | ||||||||||||||
where | ||||||||||||||
private | ||||||||||||||
module C = Precategory C | ||||||||||||||
module D = Precategory D | ||||||||||||||
module E = Displayed E | ||||||||||||||
module F' = Lifting F' | ||||||||||||||
Comment on lines
+172
to
+184
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This should be hidden. |
||||||||||||||
|
||||||||||||||
Left' : ∀ (d : D.Ob) → Lifting E (Bi.Left F d) | ||||||||||||||
Left' d .Lifting.F₀' c = Lifting.F₀' F' (c , d) | ||||||||||||||
Left' d .Lifting.F₁' f = Lifting.F₁' F' ( f , D.id ) | ||||||||||||||
Left' d .Lifting.F-id' = Lifting.F-id' F' | ||||||||||||||
Comment on lines
+187
to
+189
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
I guess this isn't in the style guide but please use postfix projections everywhere. |
||||||||||||||
|
||||||||||||||
Left' d .Lifting.F-∘' f g = symP | ||||||||||||||
((F'.F₁' (f , D.id) E.∘' | ||||||||||||||
F'.F₁' (g , D.id)) | ||||||||||||||
E.≡[]˘⟨ F'.F-∘' (f , D.id) (g , D.id) ⟩ | ||||||||||||||
(ap (F' .Lifting.F₁') | ||||||||||||||
(λ i → C._∘_ f g , D.idl (D.id) i) | ||||||||||||||
E.∙[] refl)) | ||||||||||||||
Comment on lines
+192
to
+197
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The alignment is a bit awkward here, could you make this a proper reasoning chain ending with Also it looks like the proofs of |
||||||||||||||
|
||||||||||||||
Right' : ∀ (c : C.Ob) → Lifting E (Bi.Right F c) | ||||||||||||||
Right' c .Lifting.F₀' d = Lifting.F₀' F' (c , d) | ||||||||||||||
Right' c .Lifting.F₁' f = Lifting.F₁' F' (C.id , f) | ||||||||||||||
Right' c .Lifting.F-id' = Lifting.F-id' F' | ||||||||||||||
Right' c .Lifting.F-∘' f g = symP | ||||||||||||||
((F'.F₁' (C.id , f) E.∘' F'.F₁' (C.id , g)) | ||||||||||||||
E.≡[]˘⟨ F'.F-∘' (C.id , f) (C.id , g) ⟩ | ||||||||||||||
(ap (F' .Lifting.F₁') | ||||||||||||||
(λ i → (C.idl (C.id) i , D._∘_ f g )) | ||||||||||||||
E.∙[] refl)) | ||||||||||||||
``` | ||||||||||||||
|
||||||||||||||
## Natural transformations between liftings | ||||||||||||||
|
||||||||||||||
As liftings are a reorganization of functors, it is reasonable to expect | ||||||||||||||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.