all | dynamic | editing | fast | generalization | human | video | lighting | reconstruction | texture | semantic | pose-slam | others
- GARF:Geometry-Aware Generalized Neural Radiance Field | [code]
Neural Radiance Field (NeRF) has revolutionized free viewpoint rendering tasks and achieved impressive results. However, the efficiency and accuracy problems hinder its wide applications. To address these issues, we propose Geometry-Aware Generalized Neural Radiance Field (GARF) with a geometry-aware dynamic sampling (GADS) strategy to perform real-time novel view rendering and unsupervised depth estimation on unseen scenes without per-scene optimization. Distinct from most existing generalized NeRFs, our framework infers the unseen scenes on both pixel-scale and geometry-scale with only a few input images. More specifically, our method learns common attributes of novel-view synthesis by an encoder-decoder structure and a point-level learnable multi-view feature fusion module which helps avoid occlusion. To preserve scene characteristics in the generalized model, we introduce an unsupervised depth estimation module to derive the coarse geometry, narrow down the ray sampling interval to proximity space of the estimated surface and sample in expectation maximum position, constituting Geometry-Aware Dynamic Sampling strategy (GADS). Moreover, we introduce a Multi-level Semantic Consistency loss (MSC) to assist more informative representation learning. Extensive experiments on indoor and outdoor datasets show that comparing with state-of-the-art generalized NeRF methods, GARF reduces samples by more than 25%, while improving rendering quality and 3D geometry estimation.
- QFF: Quantized Fourier Features for Neural Field Representations | [code]
Multilayer perceptrons (MLPs) learn high frequencies slowly. Recent approaches encode features in spatial bins to improve speed of learning details, but at the cost of larger model size and loss of continuity. Instead, we propose to encode features in bins of Fourier features that are commonly used for positional encoding. We call these Quantized Fourier Features (QFF). As a naturally multiresolution and periodic representation, our experiments show that using QFF can result in smaller model size, faster training, and better quality outputs for several applications, including Neural Image Representations (NIR), Neural Radiance Field (NeRF) and Signed Distance Function (SDF) modeling. QFF are easy to code, fast to compute, and serve as a simple drop-in addition to many neural field representations.
- Mixed Neural Voxels for Fast Multi-view Video Synthesis | [code]
Synthesizing high-fidelity videos from real-world multi-view input is challenging because of the complexities of real-world environments and highly dynamic motions. Previous works based on neural radiance fields have demonstrated high-quality reconstructions of dynamic scenes. However, training such models on real-world scenes is time-consuming, usually taking days or weeks. In this paper, we present a novel method named MixVoxels to better represent the dynamic scenes with fast training speed and competitive rendering qualities. The proposed MixVoxels represents the 4D dynamic scenes as a mixture of static and dynamic voxels and processes them with different networks. In this way, the computation of the required modalities for static voxels can be processed by a lightweight model, which essentially reduces the amount of computation, especially for many daily dynamic scenes dominated by the static background. To separate the two kinds of voxels, we propose a novel variation field to estimate the temporal variance of each voxel. For the dynamic voxels, we design an inner-product time query method to efficiently query multiple time steps, which is essential to recover the high-dynamic motions. As a result, with 15 minutes of training for dynamic scenes with inputs of 300-frame videos, MixVoxels achieves better PSNR than previous methods. Codes and trained models are available at this https URL
- Differentiable Rendering Using RGBXY Derivatives and Optimal Transport, ToG2022 | [code]
Traditional differentiable rendering approaches are usually hard to converge in inverse rendering optimizations, especially when initial and target object locations are not so close. Inspired by Lagrangian fluid simulation, we present a novel differentiable rendering method to address this problem. We associate each screen-space pixel with the visible 3D geometric point covered by the center of the pixel and compute derivatives on geometric points rather than on pixels. We refer to the associated geometric points as point proxies of pixels. For each point proxy, we compute its 5D RGBXY derivatives which measures how its 3D RGB color and 2D projected screen-space position change with respect to scene parameters. Furthermore, in order to capture global and long-range object motions, we utilize optimal transport based pixel matching to design a more sophisticated loss function. We have conducted experiments to evaluate the effectiveness of our proposed method on various inverse rendering applications and have demonstrated superior convergence behavior compared to state-of-the-art baselines.
- QuadStream: A Quad-Based Scene Streaming Architecture for Novel Viewpoint Reconstruction, ToG2022 | [code]
Streaming rendered 3D content over a network to a thin client device, such as a phone or a VR/AR headset, brings high-fidelity graphics to platforms where it would not normally possible due to thermal, power, or cost constraints. Streamed 3D content must be transmitted with a representation that is both robust to latency and potential network dropouts. Transmitting a video stream and reprojecting to correct for changing viewpoints fails in the presence of disocclusion events; streaming scene geometry and performing high-quality rendering on the client is not possible on limited-power mobile GPUs. To balance the competing goals of disocclusion robustness and minimal client workload, we introduce QuadStream, a new streaming content representation that reduces motion-to-photon latency by allowing clients to efficiently render novel views without artifacts caused by disocclusion events. Motivated by traditional macroblock approaches to video codec design, we decompose the scene seen from positions in a view cell into a series of quad proxies, or view-aligned quads from multiple views. By operating on a rasterized G-Buffer, our approach is independent of the representation used for the scene itself; the resulting QuadStream is an approximate geometric representation of the scene that can be reconstructed by a thin client to render both the current view and nearby adjacent views. Our technical contributions are an efficient parallel quad generation, merging, and packing strategy for proxy views covering potential client movement in a scene; a packing and encoding strategy that allows masked quads with depth information to be transmitted as a frame-coherent stream; and an efficient rendering approach for rendering our QuadStream representation into entirely novel views on thin clients. We show that our approach achieves superior quality compared both to video data streaming methods, and to geometry-based streaming.
- Lightweight Neural Basis Functions for All-Frequency Shading, SIGGRAPH-Asia2022 | [code]
Basis functions provide both the abilities for compact representation and the properties for efficient computation. Therefore, they are pervasively used in rendering to perform all-frequency shading. However, common basis functions, including spherical harmonics (SH), wavelets, and spherical Gaussians (SG) all have their own limitations, such as low-frequency for SH, not rotationally invariant for wavelets, and no multiple product support for SG. In this paper, we present neural basis functions, an implicit and data-driven set of basis functions that circumvents the limitations with all desired properties. We first introduce a representation neural network that takes any general 2D spherical function (e.g. environment lighting, BRDF, and visibility) as input and projects it onto the latent space as coefficients of our neural basis functions. Then, we design several lightweight neural networks that perform different types of computation, giving our basis functions different computational properties such as double/triple product integrals and rotations. We demonstrate the practicality of our neural basis functions by integrating them into all-frequency shading applications, showing that our method not only achieves a compression rate of and 10 × -40 × better performance than wavelets at equal quality, but also renders all-frequency lighting effects in real-time without the aforementioned limitations from classic basis functions.
- ScanNeRF: a Scalable Benchmark for Neural Radiance Fields, WACV2023 | [code]
In this paper, we propose the first-ever real benchmark thought for evaluating Neural Radiance Fields (NeRFs) and, in general, Neural Rendering (NR) frameworks. We design and implement an effective pipeline for scanning real objects in quantity and effortlessly. Our scan station is built with less than 500$ hardware budget and can collect roughly 4000 images of a scanned object in just 5 minutes. Such a platform is used to build ScanNeRF, a dataset characterized by several train/val/test splits aimed at benchmarking the performance of modern NeRF methods under different conditions. Accordingly, we evaluate three cutting-edge NeRF variants on it to highlight their strengths and weaknesses. The dataset is available on our project page, together with an online benchmark to foster the development of better and better NeRFs.
- Immersive Neural Graphics Primitives | [code]
Neural radiance field (NeRF), in particular its extension by instant neural graphics primitives, is a novel rendering method for view synthesis that uses real-world images to build photo-realistic immersive virtual scenes. Despite its potential, research on the combination of NeRF and virtual reality (VR) remains sparse. Currently, there is no integration into typical VR systems available, and the performance and suitability of NeRF implementations for VR have not been evaluated, for instance, for different scene complexities or screen resolutions. In this paper, we present and evaluate a NeRF-based framework that is capable of rendering scenes in immersive VR allowing users to freely move their heads to explore complex real-world scenes. We evaluate our framework by benchmarking three different NeRF scenes concerning their rendering performance at different scene complexities and resolutions. Utilizing super-resolution, our approach can yield a frame rate of 30 frames per second with a resolution of 1280x720 pixels per eye. We discuss potential applications of our framework and provide an open source implementation online.
- Shape, Pose, and Appearance from a Single Image via Bootstrapped Radiance Field Inversion | [code]
Neural Radiance Fields (NeRF) coupled with GANs represent a promising direction in the area of 3D reconstruction from a single view, owing to their ability to efficiently model arbitrary topologies. Recent work in this area, however, has mostly focused on synthetic datasets where exact ground-truth poses are known, and has overlooked pose estimation, which is important for certain downstream applications such as augmented reality (AR) and robotics. We introduce a principled end-to-end reconstruction framework for natural images, where accurate ground-truth poses are not available. Our approach recovers an SDF-parameterized 3D shape, pose, and appearance from a single image of an object, without exploiting multiple views during training. More specifically, we leverage an unconditional 3D-aware generator, to which we apply a hybrid inversion scheme where a model produces a first guess of the solution which is then refined via optimization. Our framework can de-render an image in as few as 10 steps, enabling its use in practical scenarios. We demonstrate state-of-the-art results on a variety of real and synthetic benchmarks.
- DINER: Disorder-Invariant Implicit Neural Representation | [code]
Implicit neural representation (INR) characterizes the attributes of a signal as a function of corresponding coordinates which emerges as a sharp weapon for solving inverse problems. However, the capacity of INR is limited by the spectral bias in the network training. In this paper, we find that such a frequency-related problem could be largely solved by re-arranging the coordinates of the input signal, for which we propose the disorder-invariant implicit neural representation (DINER) by augmenting a hash-table to a traditional INR backbone. Given discrete signals sharing the same histogram of attributes and different arrangement orders, the hash-table could project the coordinates into the same distribution for which the mapped signal can be better modeled using the subsequent INR network, leading to significantly alleviated spectral bias. Experiments not only reveal the generalization of the DINER for different INR backbones (MLP vs. SIREN) and various tasks (image/video representation, phase retrieval, and refractive index recovery) but also show the superiority over the state-of-the-art algorithms both in quality and speed.
- Temporal Coherence-Based Distributed Ray Tracing of Massive Scenes, ToG2022 | [code]
Distributed ray tracing algorithms are widely used when rendering massive scenes, where data utilization and load balancing are the keys to improving performance. One essential observation is that rays are temporally coherent, which indicates that temporal information can be used to improve computational efficiency. In this paper, we use temporal coherence to optimize the performance of distributed ray tracing. First, we propose a temporal coherence-based scheduling algorithm to guide the task/data assignment and scheduling. Then, we propose a virtual portal structure to predict the radiance of rays based on the previous frame, and send the rays with low radiance to a precomputed simplified model for further tracing, which can dramatically reduce the traversal complexity and the overhead of network data transmission. The approach was validated on scenes of sizes up to 355 GB. Our algorithm can achieve a speedup of up to 81% compared to previous algorithms, with a very small mean squared error.
- QRF: Implicit Neural Representations with Quantum Radiance Fields | [code]
Photorealistic rendering of real-world scenes is a tremendous challenge with a wide range of applications, including mixed reality (MR), and virtual reality (VR). Neural networks, which have long been investigated in the context of solving differential equations, have previously been introduced as implicit representations for photorealistic rendering. However, realistic rendering using classic computing is challenging because it requires time-consuming optical ray marching, and suffer computational bottlenecks due to the curse of dimensionality. In this paper, we propose Quantum Radiance Fields (QRF), which integrate the quantum circuit, quantum activation function, and quantum volume rendering for implicit scene representation. The results indicate that QRF not only exploits the advantage of quantum computing, such as high speed, fast convergence, and high parallelism, but also ensure high quality of volume rendering.
- NeX360: Real-time All-around View Synthesis with Neural Basis Expansion, TPAMI2022 | [code]
We present NeX, a new approach to novel view synthesis based on enhancements of multiplane images (MPI) that can reproduce view-dependent effects in real time. Unlike traditional MPI, our technique parameterizes each pixel as a linear combination of spherical basis functions learned from a neural network to model view-dependent effects and uses a hybrid implicit-explicit modeling strategy to improve fine detail. Moreover, we also present an extension to NeX, which leverages knowledge distillation to train multiple MPIs for unbounded 360 ∘ scenes. Our method is evaluated on several benchmark datasets: NeRF-Synthetic dataset, Light Field dataset, Real Forward-Facing dataset, Space dataset, as well as Shiny , our new dataset that contains significantly more challenging view-dependent effects, such as the rainbow reflections on the CD. Our method outperforms other real-time rendering approaches on PSNR, SSIM, and LPIPS and can render unbounded 360 ∘ scenes in real time.
- NeRFPlayer: A Streamable Dynamic Scene Representation with Decomposed Neural Radiance Fields | [code]
Visually exploring in a real-world 4D spatiotemporal space freely in VR has been a long-term quest. The task is especially appealing when only a few or even single RGB cameras are used for capturing the dynamic scene. To this end, we present an efficient framework capable of fast reconstruction, compact modeling, and streamable rendering. First, we propose to decompose the 4D spatiotemporal space according to temporal characteristics. Points in the 4D space are associated with probabilities of belonging to three categories: static, deforming, and new areas. Each area is represented and regularized by a separate neural field. Second, we propose a hybrid representations based feature streaming scheme for efficiently modeling the neural fields. Our approach, coined NeRFPlayer, is evaluated on dynamic scenes captured by single hand-held cameras and multi-camera arrays, achieving comparable or superior rendering performance in terms of quality and speed comparable to recent state-of-the-art methods, achieving reconstruction in 10 seconds per frame and real-time rendering.
- Streaming Radiance Fields for 3D Video Synthesis, NeurIPS2022 | [code]
We present an explicit-grid based method for efficiently reconstructing streaming radiance fields for novel view synthesis of real world dynamic scenes. Instead of training a single model that combines all the frames, we formulate the dynamic modeling problem with an incremental learning paradigm in which per-frame model difference is trained to complement the adaption of a base model on the current frame. By exploiting the simple yet effective tuning strategy with narrow bands, the proposed method realizes a feasible framework for handling video sequences on-the-fly with high training efficiency. The storage overhead induced by using explicit grid representations can be significantly reduced through the use of model difference based compression. We also introduce an efficient strategy to further accelerate model optimization for each frame. Experiments on challenging video sequences demonstrate that our approach is capable of achieving a training speed of 15 seconds per-frame with competitive rendering quality, which attains 1000× speedup over the state-of-the-art implicit methods. Code is available at this https URL.
- Lightweight Stepless Super-Resolution of Remote Sensing Images via Saliency-Aware Dynamic Routing Strategy |
[code]
Deep learning-based algorithms have greatly improved the performance of remote sensing image (RSI) super-resolution (SR). However, increasing network depth and parameters cause a huge burden of computing and storage. Directly reducing the depth or width of existing models results in a large performance drop. We observe that the SR difficulty of different regions in an RSI varies greatly, and existing methods use the same deep network to process all regions in an image, resulting in a waste of computing resources. In addition, existing SR methods generally predefine integer scale factors and cannot perform stepless SR, i.e., a single model can deal with any potential scale factor. Retraining the model on each scale factor wastes considerable computing resources and model storage space. To address the above problems, we propose a saliency-aware dynamic routing network (SalDRN) for lightweight and stepless SR of RSIs. First, we introduce visual saliency as an indicator of region-level SR difficulty and integrate a lightweight saliency detector into the SalDRN to capture pixel-level visual characteristics. Then, we devise a saliency-aware dynamic routing strategy that employs path selection switches to adaptively select feature extraction paths of appropriate depth according to the SR difficulty of sub-image patches. Finally, we propose a novel lightweight stepless upsampling module whose core is an implicit feature function for realizing mapping from low-resolution feature space to high-resolution feature space. Comprehensive experiments verify that the SalDRN can achieve a good trade-off between performance and complexity. The code is available at \url{this https URL}.
- Scalable Neural Video Representations with Learnable Positional Features, NeurIPS2022 |
[code]
Succinct representation of complex signals using coordinate-based neural representations (CNRs) has seen great progress, and several recent efforts focus on extending them for handling videos. Here, the main challenge is how to (a) alleviate a compute-inefficiency in training CNRs to (b) achieve high-quality video encoding while (c) maintaining the parameter-efficiency. To meet all requirements (a), (b), and (c) simultaneously, we propose neural video representations with learnable positional features (NVP), a novel CNR by introducing "learnable positional features" that effectively amortize a video as latent codes. Specifically, we first present a CNR architecture based on designing 2D latent keyframes to learn the common video contents across each spatio-temporal axis, which dramatically improves all of those three requirements. Then, we propose to utilize existing powerful image and video codecs as a compute-/memory-efficient compression procedure of latent codes. We demonstrate the superiority of NVP on the popular UVG benchmark; compared with prior arts, NVP not only trains 2 times faster (less than 5 minutes) but also exceeds their encoding quality as 34.07→34.57 (measured with the PSNR metric), even using >8 times fewer parameters. We also show intriguing properties of NVP, e.g., video inpainting, video frame interpolation, etc.
- CUF: Continuous Upsampling Filters | [code]
Neural fields have rapidly been adopted for representing 3D signals, but their application to more classical 2D image-processing has been relatively limited. In this paper, we consider one of the most important operations in image processing: upsampling. In deep learning, learnable upsampling layers have extensively been used for single image super-resolution. We propose to parameterize upsampling kernels as neural fields. This parameterization leads to a compact architecture that obtains a 40-fold reduction in the number of parameters when compared with competing arbitrary-scale super-resolution architectures. When upsampling images of size 256x256 we show that our architecture is 2x-10x more efficient than competing arbitrary-scale super-resolution architectures, and more efficient than sub-pixel convolutions when instantiated to a single-scale model. In the general setting, these gains grow polynomially with the square of the target scale. We validate our method on standard benchmarks showing such efficiency gains can be achieved without sacrifices in super-resolution performance.
- NerfAcc: A General NeRF Acceleration Toolbox |
[code]
We propose NerfAcc, a toolbox for efficient volumetric rendering of radiance fields. We build on the techniques proposed in Instant-NGP, and extend these techniques to not only support bounded static scenes, but also for dynamic scenes and unbounded scenes. NerfAcc comes with a user-friendly Python API, and is ready for plug-and-play acceleration of most NeRFs. Various examples are provided to show how to use this toolbox. Code can be found here: this https URL.
- Learning Perception-Aware Agile Flight in Cluttered Environments | [code]
Recently, neural control policies have outperformed existing model-based planning-and-control methods for autonomously navigating quadrotors through cluttered environments in minimum time. However, they are not perception aware, a crucial requirement in vision-based navigation due to the camera's limited field of view and the underactuated nature of a quadrotor. We propose a method to learn neural network policies that achieve perception-aware, minimum-time flight in cluttered environments. Our method combines imitation learning and reinforcement learning (RL) by leveraging a privileged learning-by-cheating framework. Using RL, we first train a perception-aware teacher policy with full-state information to fly in minimum time through cluttered environments. Then, we use imitation learning to distill its knowledge into a vision-based student policy that only perceives the environment via a camera. Our approach tightly couples perception and control, showing a significant advantage in computation speed (10x faster) and success rate. We demonstrate the closed-loop control performance using a physical quadrotor and hardware-in-the-loop simulation at speeds up to 50km/h.
- Understanding Pure CLIP Guidance for Voxel Grid NeRF Models | [code]
We explore the task of text to 3D object generation using CLIP. Specifically, we use CLIP for guidance without access to any datasets, a setting we refer to as pure CLIP guidance. While prior work has adopted this setting, there is no systematic study of mechanics for preventing adversarial generations within CLIP. We illustrate how different image-based augmentations prevent the adversarial generation problem, and how the generated results are impacted. We test different CLIP model architectures and show that ensembling different models for guidance can prevent adversarial generations within bigger models and generate sharper results. Furthermore, we implement an implicit voxel grid model to show how neural networks provide an additional layer of regularization, resulting in better geometrical structure and coherency of generated objects. Compared to prior work, we achieve more coherent results with higher memory efficiency and faster training speeds.
- Fast Disparity Estimation from a Single Compressed Light Field Measurement | [code]
The abundant spatial and angular information from light fields has allowed the development of multiple disparity estimation approaches. However, the acquisition of light fields requires high storage and processing cost, limiting the use of this technology in practical applications. To overcome these drawbacks, the compressive sensing (CS) theory has allowed the development of optical architectures to acquire a single coded light field measurement. This measurement is decoded using an optimization algorithm or deep neural network that requires high computational costs. The traditional approach for disparity estimation from compressed light fields requires first recovering the entire light field and then a post-processing step, thus requiring long times. In contrast, this work proposes a fast disparity estimation from a single compressed measurement by omitting the recovery step required in traditional approaches. Specifically, we propose to jointly optimize an optical architecture for acquiring a single coded light field snapshot and a convolutional neural network (CNN) for estimating the disparity maps. Experimentally, the proposed method estimates disparity maps comparable with those obtained from light fields reconstructed using deep learning approaches. Furthermore, the proposed method is 20 times faster in training and inference than the best method that estimates the disparity from reconstructed light fields.
- wildNeRF: Complete view synthesis of in-the-wild dynamic scenes captured using sparse monocular data | [code]
We present a novel neural radiance model that is trainable in a self-supervised manner for novel-view synthesis of dynamic unstructured scenes. Our end-to-end trainable algorithm learns highly complex, real-world static scenes within seconds and dynamic scenes with both rigid and non-rigid motion within minutes. By differentiating between static and motion-centric pixels, we create high-quality representations from a sparse set of images. We perform extensive qualitative and quantitative evaluation on existing benchmarks and set the state-of-the-art on performance measures on the challenging NVIDIA Dynamic Scenes Dataset. Additionally, we evaluate our model performance on challenging real-world datasets such as Cholec80 and SurgicalActions160.
- FoV-NeRF: Foveated Neural Radiance Fields for Virtual Reality, TVCG2022 | [code]
Virtual Reality (VR) is becoming ubiquitous with the rise of consumer displays and commercial VR platforms. Such displays require low latency and high quality rendering of synthetic imagery with reduced compute overheads. Recent advances in neural rendering showed promise of unlocking new possibilities in 3D computer graphics via image-based representations of virtual or physical environments. Specifically, the neural radiance fields (NeRF) demonstrated that photo-realistic quality and continuous view changes of 3D scenes can be achieved without loss of view-dependent effects. While NeRF can significantly benefit rendering for VR applications, it faces unique challenges posed by high field-of-view, high resolution, and stereoscopic/egocentric viewing, typically causing low quality and high latency of the rendered images. In VR, this not only harms the interaction experience but may also cause sickness. To tackle these problems toward six-degrees-of-freedom, egocentric, and stereo NeRF in VR, we present the first gaze-contingent 3D neural representation and view synthesis method . We incorporate the human psychophysics of visual- and stereo-acuity into an egocentric neural representation of 3D scenery. We then jointly optimize the latency/performance and visual quality while mutually bridging human perception and neural scene synthesis to achieve perceptually high-quality immersive interaction. We conducted both objective analysis and subjective studies to evaluate the effectiveness of our approach. We find that our method significantly reduces latency (up to 99% time reduction compared with NeRF) without loss of high-fidelity rendering (perceptually identical to full-resolution ground truth). The presented approach may serve as the first step toward future VR/AR systems that capture, teleport, and visualize remote environments in real-time.
- CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural Representations | [code]
This paper proposes CLONeR, which significantly improves upon NeRF by allowing it to model large outdoor driving scenes that are observed from sparse input sensor views. This is achieved by decoupling occupancy and color learning within the NeRF framework into separate Multi-Layer Perceptrons (MLPs) trained using LiDAR and camera data, respectively. In addition, this paper proposes a novel method to build differentiable 3D Occupancy Grid Maps (OGM) alongside the NeRF model, and leverage this occupancy grid for improved sampling of points along a ray for volumetric rendering in metric space.
- Voxurf: Voxel-based Efficient and Accurate Neural Surface Reconstruction | [code]
Neural surface reconstruction aims to reconstruct accurate 3D surfaces based on multi-view images. Previous methods based on neural volume rendering mostly train a fully implicit model, and they require hours of training for a single scene. Recent efforts explore the explicit volumetric representation, which substantially accelerates the optimization process by memorizing significant information in learnable voxel grids. However, these voxel-based methods often struggle in reconstructing fine-grained geometry. Through empirical studies, we found that high-quality surface reconstruction hinges on two key factors: the capability of constructing a coherent shape and the precise modeling of color-geometry dependency. In particular, the latter is the key to the accurate reconstruction of fine details. Inspired by these findings, we develop Voxurf, a voxel-based approach for efficient and accurate neural surface reconstruction, which consists of two stages: 1) leverage a learnable feature grid to construct the color field and obtain a coherent coarse shape, and 2) refine detailed geometry with a dual color network that captures precise color-geometry dependency. We further introduce a hierarchical geometry feature to enable information sharing across voxels. Our experiments show that Voxurf achieves high efficiency and high quality at the same time. On the DTU benchmark, Voxurf achieves higher reconstruction quality compared to state-of-the-art methods, with 20x speedup in training.
- E-NeRF: Neural Radiance Fields from a Moving Event Camera | [code]
Estimating neural radiance fields (NeRFs) from ideal images has been extensively studied in the computer vision community. Most approaches assume optimal illumination and slow camera motion. These assumptions are often violated in robotic applications, where images contain motion blur and the scene may not have suitable illumination. This can cause significant problems for downstream tasks such as navigation, inspection or visualization of the scene. To alleviate these problems we present E-NeRF, the first method which estimates a volumetric scene representation in the form of a NeRF from a fast-moving event camera. Our method can recover NeRFs during very fast motion and in high dynamic range conditions, where frame-based approaches fail. We show that rendering high-quality frames is possible by only providing an event stream as input. Furthermore, by combining events and frames, we can estimate NeRFs of higher quality than state-of-the-art approaches under severe motion blur. We also show that combining events and frames can overcome failure cases of NeRF estimation in scenarios where only few input views are available, without requiring additional regularization.
- PDRF: Progressively Deblurring Radiance Field for Fast and Robust Scene Reconstruction from Blurry Images | [code]
We present Progressively Deblurring Radiance Field (PDRF), a novel approach to efficiently reconstruct high quality radiance fields from blurry images. While current State-of-The-Art (SoTA) scene reconstruction methods achieve photo-realistic rendering results from clean source views, their performances suffer when the source views are affected by blur, which is commonly observed for images in the wild. Previous deblurring methods either do not account for 3D geometry, or are computationally intense. To addresses these issues, PDRF, a progressively deblurring scheme in radiance field modeling, accurately models blur by incorporating 3D scene context. PDRF further uses an efficient importance sampling scheme, which results in fast scene optimization. Specifically, PDRF proposes a Coarse Ray Renderer to quickly estimate voxel density and feature; a Fine Voxel Renderer is then used to achieve high quality ray tracing. We perform extensive experiments and show that PDRF is 15X faster than previous SoTA while achieving better performance on both synthetic and real scenes.
- HDR-Plenoxels: Self-Calibrating High Dynamic Range Radiance Fields, ECCV2022 | [code]
We propose high dynamic range radiance (HDR) fields, HDR-Plenoxels, that learn a plenoptic function of 3D HDR radiance fields, geometry information, and varying camera settings inherent in 2D low dynamic range (LDR) images. Our voxel-based volume rendering pipeline reconstructs HDR radiance fields with only multi-view LDR images taken from varying camera settings in an end-to-end manner and has a fast convergence speed. To deal with various cameras in real-world scenarios, we introduce a tone mapping module that models the digital in-camera imaging pipeline (ISP) and disentangles radiometric settings. Our tone mapping module allows us to render by controlling the radiometric settings of each novel view. Finally, we build a multi-view dataset with varying camera conditions, which fits our problem setting. Our experiments show that HDR-Plenoxels can express detail and high-quality HDR novel views from only LDR images with various cameras.
- OmniVoxel: A Fast and Precise Reconstruction Method of Omnidirectional Neural Radiance Field, GCCE 2022 | [code]
This paper proposes a method to reconstruct the neural radiance field with equirectangular omnidirectional images. Implicit neural scene representation with a radiance field can reconstruct the 3D shape of a scene continuously within a limited spatial area. However, training a fully implicit representation on commercial PC hardware requires a lot of time and computing resources (15 ∼ 20 hours per scene). Therefore, we propose a method to accelerate this process significantly (20 ∼ 40 minutes per scene). Instead of using a fully implicit representation of rays for radiance field reconstruction, we adopt feature voxels that contain density and color features in tensors. Considering omnidirectional equirectangular input and the camera layout, we use spherical voxelization for representation instead of cubic representation. Our voxelization method could balance the reconstruction quality of the inner scene and outer scene. In addition, we adopt the axis-aligned positional encoding method on the color features to increase the total image quality. Our method achieves satisfying empirical performance on synthetic datasets with random camera poses. Moreover, we test our method with real scenes which contain complex geometries and also achieve state-of-the-art performance. Our code and complete dataset will be released at the same time as the paper publication.
- HRF-Net: Holistic Radiance Fields from Sparse Inputs | [code]
We present HRF-Net, a novel view synthesis method based on holistic radiance fields that renders novel views using a set of sparse inputs. Recent generalizing view synthesis methods also leverage the radiance fields but the rendering speed is not real-time. There are existing methods that can train and render novel views efficiently but they can not generalize to unseen scenes. Our approach addresses the problem of real-time rendering for generalizing view synthesis and consists of two main stages: a holistic radiance fields predictor and a convolutional-based neural renderer. This architecture infers not only consistent scene geometry based on the implicit neural fields but also renders new views efficiently using a single GPU. We first train HRF-Net on multiple 3D scenes of the DTU dataset and the network can produce plausible novel views on unseen real and synthetics data using only photometric losses. Moreover, our method can leverage a denser set of reference images of a single scene to produce accurate novel views without relying on additional explicit representations and still maintains the high-speed rendering of the pre-trained model. Experimental results show that HRF-Net outperforms state-of-the-art generalizable neural rendering methods on various synthetic and real datasets.
- End-to-end learning of 3D phase-only holograms for holographic display | [code]
Computer-generated holography (CGH) provides volumetric control of coherent wavefront and is fundamental to applications such as volumetric 3D displays, lithography, neural photostimulation, and optical/acoustic trapping. Recently, deep learning-based methods emerged as promising computational paradigms for CGH synthesis that overcome the quality-runtime tradeoff in conventional simulation/optimization-based methods. Yet, the quality of the predicted hologram is intrinsically bounded by the dataset’s quality. Here we introduce a new hologram dataset, MIT-CGH-4K-V2, that uses a layered depth image as a data-efficient volumetric 3D input and a two-stage supervised+unsupervised training protocol for direct synthesis of high-quality 3D phase-only holograms. The proposed system also corrects vision aberration, allowing customization for end-users. We experimentally show photorealistic 3D holographic projections and discuss relevant spatial light modulator calibration procedures. Our method runs in real-time on a consumer GPU and 5 FPS on an iPhone 13 Pro, promising drastically enhanced performance for the applications above.
- MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field Rendering on Mobile Architectures |
[code]
Neural Radiance Fields (NeRFs) have demonstrated amazing ability to synthesize images of 3D scenes from novel views. However, they rely upon specialized volumetric rendering algorithms based on ray marching that are mismatched to the capabilities of widely deployed graphics hardware. This paper introduces a new NeRF representation based on textured polygons that can synthesize novel images efficiently with standard rendering pipelines. The NeRF is represented as a set of polygons with textures representing binary opacities and feature vectors. Traditional rendering of the polygons with a z-buffer yields an image with features at every pixel, which are interpreted by a small, view-dependent MLP running in a fragment shader to produce a final pixel color. This approach enables NeRFs to be rendered with the traditional polygon rasterization pipeline, which provides massive pixel-level parallelism, achieving interactive frame rates on a wide range of compute platforms, including mobile phones.
- End-to-end View Synthesis via NeRF Attention | [code]
In this paper, we present a simple seq2seq formulation for view synthesis where we take a set of ray points as input and output colors corresponding to the rays. Directly applying a standard transformer on this seq2seq formulation has two limitations. First, the standard attention cannot successfully fit the volumetric rendering procedure, and therefore high-frequency components are missing in the synthesized views. Second, applying global attention to all rays and pixels is extremely inefficient. Inspired by the neural radiance field (NeRF), we propose the NeRF attention (NeRFA) to address the above problems. On the one hand, NeRFA considers the volumetric rendering equation as a soft feature modulation procedure. In this way, the feature modulation enhances the transformers with the NeRF-like inductive bias. On the other hand, NeRFA performs multi-stage attention to reduce the computational overhead. Furthermore, the NeRFA model adopts the ray and pixel transformers to learn the interactions between rays and pixels. NeRFA demonstrates superior performance over NeRF and NerFormer on four datasets: DeepVoxels, Blender, LLFF, and CO3D. Besides, NeRFA establishes a new state-of-the-art under two settings: the single-scene view synthesis and the category-centric novel view synthesis. The code will be made publicly available.
- Going Off-Grid: Continuous Implicit Neural Representations for 3D Vascular Modeling, MICCAI STACOM 2022 | [code]
Personalised 3D vascular models are valuable for diagnosis, prognosis and treatment planning in patients with cardiovascular disease. Traditionally, such models have been constructed with explicit representations such as meshes and voxel masks, or implicit representations such as radial basis functions or atomic (tubular) shapes. Here, we propose to represent surfaces by the zero level set of their signed distance function (SDF) in a differentiable implicit neural representation (INR). This allows us to model complex vascular structures with a representation that is implicit, continuous, light-weight, and easy to integrate with deep learning algorithms. We here demonstrate the potential of this approach with three practical examples. First, we obtain an accurate and watertight surface for an abdominal aortic aneurysm (AAA) from CT images and show robust fitting from as little as 200 points on the surface. Second, we simultaneously fit nested vessel walls in a single INR without intersections. Third, we show how 3D models of individual arteries can be smoothly blended into a single watertight surface. Our results show that INRs are a flexible representation with potential for minimally interactive annotation and manipulation of complex vascular structures.
- Plenoxels: Radiance Fields without Neural Networks, CVPR2022(oral) |
[code]
We introduce Plenoxels (plenoptic voxels), a system for photorealistic view synthesis. Plenoxels represent a scene as a sparse 3D grid with spherical harmonics. This representation can be optimized from calibrated images via gradient methods and regularization without any neural components. On standard, benchmark tasks, Plenoxels are optimized two orders of magnitude faster than Neural Radiance Fields with no loss in visual quality.
- Neural Sparse Voxel Fields, NeurIPS2020 |
[code]
We introduce Neural Sparse Voxel Fields (NSVF), a new neural scene representation for fast and high-quality free-viewpoint rendering. NSVF defines a set of voxel-bounded implicit fields organized in a sparse voxel octree to model local properties in each cell. We progressively learn the underlying voxel structures with a diffentiable ray-marching operation from only a set of posed RGB images. With the sparse voxel octree structure, rendering novel views can be accelerated by skipping the voxels containing no relevant scene content. Our method is over 10 times faster than the state-of-the-art (namely, NeRF (Mildenhall et al., 2020)) at inference time while achieving higher quality results. Furthermore, by utilizing an explicit sparse voxel representation, our method can easily be applied to scene editing and scene composition. We also demonstrate several challenging tasks, including multi-scene learning, free-viewpoint rendering of a moving human, and large-scale scene rendering.
- AutoInt: Automatic Integration for Fast Neural Volume Rendering, CVPR2021 |
[code]
Numerical integration is a foundational technique in scientific computing and is at the core of many computer vision applications. Among these applications, implicit neural volume rendering has recently been proposed as a new paradigm for view synthesis, achieving photorealistic image quality. However, a fundamental obstacle to making these methods practical is the extreme computational and memory requirements caused by the required volume integrations along the rendered rays during training and inference. Millions of rays, each requiring hundreds of forward passes through a neural network are needed to approximate those integrations with Monte Carlo sampling. Here, we propose automatic integration, a new framework for learning efficient, closed-form solutions to integrals using implicit neural representation networks. For training, we instantiate the computational graph corresponding to the derivative of the implicit neural representation. The graph is fitted to the signal to integrate. After optimization, we reassemble the graph to obtain a network that represents the antiderivative. By the fundamental theorem of calculus, this enables the calculation of any definite integral in two evaluations of the network. Using this approach, we demonstrate a greater than 10× improvement in computation requirements, enabling fast neural volume rendering.
- DeRF: Decomposed Radiance Fields | [code]
With the advent of Neural Radiance Fields (NeRF), neural networks can now render novel views of a 3D scene with quality that fools the human eye. Yet, generating these images is very computationally intensive, limiting their applicability in practical scenarios. In this paper, we propose a technique based on spatial decomposition capable of mitigating this issue. Our key observation is that there are diminishing returns in employing larger (deeper and/or wider) networks. Hence, we propose to spatially decompose a scene and dedicate smaller networks for each decomposed part. When working together, these networks can render the whole scene. This allows us near-constant inference time regardless of the number of decomposed parts. Moreover, we show that a Voronoi spatial decomposition is preferable for this purpose, as it is provably compatible with the Painter's Algorithm for efficient and GPU-friendly rendering. Our experiments show that for real-world scenes, our method provides up to 3x more efficient inference than NeRF (with the same rendering quality), or an improvement of up to 1.0~dB in PSNR (for the same inference cost).
- DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks, CGF2021 |
[code]
The recent research explosion around Neural Radiance Fields (NeRFs) shows that there is immense potential for implicitly storing scene and lighting information in neural networks, e.g., for novel view generation. However, one major limitation preventing the widespread use of NeRFs is the prohibitive computational cost of excessive network evaluations along each view ray, requiring dozens of petaFLOPS when aiming for real-time rendering on current devices. We show that the number of samples required for each view ray can be significantly reduced when local samples are placed around surfaces in the scene. To this end, we propose a depth oracle network, which predicts ray sample locations for each view ray with a single network evaluation. We show that using a classification network around logarithmically discretized and spherically warped depth values is essential to encode surface locations rather than directly estimating depth. The combination of these techniques leads to DONeRF, a dual network design with a depth oracle network as a first step and a locally sampled shading network for ray accumulation. With our design, we reduce the inference costs by up to 48x compared to NeRF. Using an off-the-shelf inference API in combination with simple compute kernels, we are the first to render raymarching-based neural representations at interactive frame rates (15 frames per second at 800x800) on a single GPU. At the same time, since we focus on the important parts of the scene around surfaces, we achieve equal or better quality compared to NeRF.
- FastNeRF: High-Fidelity Neural Rendering at 200FPS, ICCV2021 | [code]
Recent work on Neural Radiance Fields (NeRF) showed how neural networks can be used to encode complex 3D environments that can be rendered photorealistically from novel viewpoints. Rendering these images is very computationally demanding and recent improvements are still a long way from enabling interactive rates, even on high-end hardware. Motivated by scenarios on mobile and mixed reality devices, we propose FastNeRF, the first NeRF-based system capable of rendering high fidelity photorealistic images at 200Hz on a high-end consumer GPU. The core of our method is a graphics-inspired factorization that allows for (i) compactly caching a deep radiance map at each position in space, (ii) efficiently querying that map using ray directions to estimate the pixel values in the rendered image. Extensive experiments show that the proposed method is 3000 times faster than the original NeRF algorithm and at least an order of magnitude faster than existing work on accelerating NeRF, while maintaining visual quality and extensibility.
- KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs , ICCV2021 |
[code]
NeRF synthesizes novel views of a scene with unprecedented quality by fitting a neural radiance field to RGB images. However, NeRF requires querying a deep Multi-Layer Perceptron (MLP) millions of times, leading to slow rendering times, even on modern GPUs. In this paper, we demonstrate that real-time rendering is possible by utilizing thousands of tiny MLPs instead of one single large MLP. In our setting, each individual MLP only needs to represent parts of the scene, thus smaller and faster-to-evaluate MLPs can be used. By combining this divide-and-conquer strategy with further optimizations, rendering is accelerated by three orders of magnitude compared to the original NeRF model without incurring high storage costs. Further, using teacher-student distillation for training, we show that this speed-up can be achieved without sacrificing visual quality.
- PlenOctrees for Real-time Rendering of Neural Radiance Fields, ICCV2021(oral) |
[code]
Real-time performance is achieved by pre-tabulating the NeRF into an octree-based radiance field that we call PlenOctrees. In order to preserve view-dependent effects such as specularities, we propose to encode appearances via closed-form spherical basis functions. Specifically, we show that it is possible to train NeRFs to predict a spherical harmonic representation of radiance, removing the viewing direction as input to the neural network. Furthermore, we show that our PlenOctrees can be directly optimized to further minimize the reconstruction loss, which leads to equal or better quality than competing methods. We further show that this octree optimization step can be used to accelerate the training time, as we no longer need to wait for the NeRF training to converge fully. Our real-time neural rendering approach may potentially enable new applications such as 6-DOF industrial and product visualizations, as well as next generation AR/VR systems.
- Mixture of Volumetric Primitives for Efficient Neural Rendering, SIGGRAPH2021 | [code]
Real-time rendering and animation of humans is a core function in games, movies, and telepresence applications. Existing methods have a number of drawbacks we aim to address with our work. Triangle meshes have difficulty modeling thin structures like hair, volumetric representations like Neural Volumes are too low-resolution given a reasonable memory budget, and high-resolution implicit representations like Neural Radiance Fields are too slow for use in real-time applications. We present Mixture of Volumetric Primitives (MVP), a representation for rendering dynamic 3D content that combines the completeness of volumetric representations with the efficiency of primitive-based rendering, e.g., point-based or mesh-based methods. Our approach achieves this by leveraging spatially shared computation with a deconvolutional architecture and by minimizing computation in empty regions of space with volumetric primitives that can move to cover only occupied regions. Our parameterization supports the integration of correspondence and tracking constraints, while being robust to areas where classical tracking fails, such as around thin or translucent structures and areas with large topological variability. MVP is a hybrid that generalizes both volumetric and primitive-based representations. Through a series of extensive experiments we demonstrate that it inherits the strengths of each, while avoiding many of their limitations. We also compare our approach to several state-of-the-art methods and demonstrate that MVP produces superior results in terms of quality and runtime performance.
- Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering, NeurIPS2021(spotlight) |
[code]
Inferring representations of 3D scenes from 2D observations is a fundamental problem of computer graphics, computer vision, and artificial intelligence. Emerging 3D-structured neural scene representations are a promising approach to 3D scene understanding. In this work, we propose a novel neural scene representation, Light Field Networks or LFNs, which represent both geometry and appearance of the underlying 3D scene in a 360-degree, four-dimensional light field parameterized via a neural implicit representation. Rendering a ray from an LFN requires only a single network evaluation, as opposed to hundreds of evaluations per ray for ray-marching or volumetric based renderers in 3D-structured neural scene representations. In the setting of simple scenes, we leverage meta-learning to learn a prior over LFNs that enables multi-view consistent light field reconstruction from as little as a single image observation. This results in dramatic reductions in time and memory complexity, and enables real-time rendering. The cost of storing a 360-degree light field via an LFN is two orders of magnitude lower than conventional methods such as the Lumigraph. Utilizing the analytical differentiability of neural implicit representations and a novel parameterization of light space, we further demonstrate the extraction of sparse depth maps from LFNs.
- Depth-supervised NeRF: Fewer Views and Faster Training for Free, CVPR2022 |
[code]
A commonly observed failure mode of Neural Radiance Field (NeRF) is fitting incorrect geometries when given an insufficient number of input views. One potential reason is that standard volumetric rendering does not enforce the constraint that most of a scene's geometry consist of empty space and opaque surfaces. We formalize the above assumption through DS-NeRF (Depth-supervised Neural Radiance Fields), a loss for learning radiance fields that takes advantage of readily-available depth supervision. We leverage the fact that current NeRF pipelines require images with known camera poses that are typically estimated by running structure-from-motion (SFM). Crucially, SFM also produces sparse 3D points that can be used as "free" depth supervision during training: we add a loss to encourage the distribution of a ray's terminating depth matches a given 3D keypoint, incorporating depth uncertainty. DS-NeRF can render better images given fewer training views while training 2-3x faster. Further, we show that our loss is compatible with other recently proposed NeRF methods, demonstrating that depth is a cheap and easily digestible supervisory signal. And finally, we find that DS-NeRF can support other types of depth supervision such as scanned depth sensors and RGB-D reconstruction outputs.
- Direct Voxel Grid Optimization: Super-fast Convergence for Radiance Fields Reconstruction, CVPR2022(oral) |
[code]
We present a super-fast convergence approach to reconstructing the per-scene radiance field from a set of images that capture the scene with known poses. This task, which is often applied to novel view synthesis, is recently revolutionized by Neural Radiance Field (NeRF) for its state-of-the-art quality and flexibility. However, NeRF and its variants require a lengthy training time ranging from hours to days for a single scene. In contrast, our approach achieves NeRF-comparable quality and converges rapidly from scratch in less than 15 minutes with a single GPU. We adopt a representation consisting of a density voxel grid for scene geometry and a feature voxel grid with a shallow network for complex view-dependent appearance. Modeling with explicit and discretized volume representations is not new, but we propose two simple yet non-trivial techniques that contribute to fast convergence speed and high-quality output. First, we introduce the post-activation interpolation on voxel density, which is capable of producing sharp surfaces in lower grid resolution. Second, direct voxel density optimization is prone to suboptimal geometry solutions, so we robustify the optimization process by imposing several priors. Finally, evaluation on five inward-facing benchmarks shows that our method matches, if not surpasses, NeRF's quality, yet it only takes about 15 minutes to train from scratch for a new scene.
- Implicit Mapping and Positioning in Real-Time, ICCV2021 | [code]
We show for the first time that a multilayer perceptron (MLP) can serve as the only scene representation in a real-time SLAM system for a handheld RGB-D camera. Our network is trained in live operation without prior data, building a dense, scene-specific implicit 3D model of occupancy and colour which is also immediately used for tracking.
- Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields, ICCV2021(oral) |
[code]
The rendering procedure used by neural radiance fields (NeRF) samples a scene with a single ray per pixel and may therefore produce renderings that are excessively blurred or aliased when training or testing images observe scene content at different resolutions. The straightforward solution of supersampling by rendering with multiple rays per pixel is impractical for NeRF, because rendering each ray requires querying a multilayer perceptron hundreds of times. Our solution, which we call "mip-NeRF" (à la "mipmap"), extends NeRF to represent the scene at a continuously-valued scale. By efficiently rendering anti-aliased conical frustums instead of rays, mip-NeRF reduces objectionable aliasing artifacts and significantly improves NeRF's ability to represent fine details, while also being 7% faster than NeRF and half the size. Compared to NeRF, mip-NeRF reduces average error rates by 17% on the dataset presented with NeRF and by 60% on a challenging multiscale variant of that dataset that we present. mip-NeRF is also able to match the accuracy of a brute-force supersampled NeRF on our multiscale dataset while being 22x faster.