Skip to content

senstar-hsoleimani/yolov5-head-deepsort-detector

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A C++ implementation of Yolov5 and Deepsort in Jetson Xavier nx and Jetson nano

MIT License GitHub stars

This repository uses yolov5 and deepsort to follow humna heads which can run in Jetson Xavier nx and Jetson nano. In Jetson Xavier Nx, it can achieve 10 FPS when images contain heads about 70+(you can try python version, when you use python version, you can find it very slow in Jetson Xavier nx , and Deepsort can cost nearly 1s).

Thanks for B.Q Long, offer the windows cmakelists.txt. If you want run this rep in windows, you can use CMakeLists_deepsort-tensorrt_win10.txt and CMakeLists_yolov5-deepsort-tensorrt_win10.txt.

You can see video play in BILIBILI, or YOUTUBE and YOUTUBE.

Use

change ./src/manager.cpp 第六行的int THRESHHOLD = 0;为你自己的最大门限值,则当检测超过这个门限是会报警。

Requirement

  1. Jetson nano or Jetson Xavier nx
  2. Jetpack 4.5.1
  3. python3 with default(jetson nano or jetson xavier nx has default python3 with tensorrt 7.1.3.0 )
  4. tensorrt 7.1.3.0
  5. torch 1.8.0
  6. torchvision 0.9.0
  7. torch2trt 0.3.0
  8. onnx 1.4.1
  9. opencv-python 4.5.3.56
  10. protobuf 3.17.3
  11. scipy 1.5.4

if you have problem in this project, you can see this artical.

Comming soon

  • Int8 .
  • IOU Tracking.
  • Faster and use less memory.

Speed

Whole process time from read image to finished deepsort (include every img preprocess and postprocess) and attention!!! the number of deepsort tracking is 70+, not single or 10-20 persons, is 70+. And all results can get in Jetson Xavier nx.

Backbone before TensorRT without tracking before TensorRT with tracking TensortRT(detection) TensorRT(detection + tracking) FPS(detection + tracking)
Yolov5s_416 100ms 0.9s 10-15ms 100-150ms 8 ~ 9
Yolov5s-640 120ms 1s 18-20ms 100-150ms 8 ~ 9

Build and Run

git clone https://github.com/RichardoMrMu/yolov5-deepsort-tensorrt.git
cd yolov5-deepsort-tensorrt
// before you cmake and make, please change ./src/main.cpp char* yolo_engine = ""; char* sort_engine = ""; to your own path
mkdir build 
cmake ..
make 

if you meet some errors in cmake and make, please see this artical or see Attention.

DataSet

If you need to train your own model with head detection, you can use this SCUT-HEAD, this dataset has bbox with head and can download freely.

Model

You need two model, one is yolov5 model, for detection, generating from tensorrtx. And the other is deepsort model, for tracking. You should generate the model the same way.

Generate yolov5 model

For yolov5 detection model, I choose yolov5s, and choose yolov5s.pt->yolov5s.wts->yolov5s.engine Note that, used models can get from yolov5 and deepsort, and if you need to use your own model, you can follow the Run Your Custom Model. You can also see tensorrtx official readme The following is deepsort.onnx and deesort.engine files, you can find in baiduyun and https://github.com/RichardoMrMu/yolov5-deepsort-tensorrt/releases/tag/yolosort

Model Url
百度云 BaiduYun url passwd:z68e
  1. Get yolov5 repository

Note that, here uses the official pertained model.And I use yolov5-5, v5.0. So if you train your own model, please be sure your yolov5 code is v5.0.

git clone -b v5.0 https://github.com/ultralytics/yolov5.git
cd yolov5
mkdir weights
cd weights
// download https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5s.pt
wget https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5s.pt
  1. Get tensorrtx.
git clone https://github.com/wang-xinyu/tensorrtx
  1. Get xxx.wst model
cp tensorrtx/gen_wts.py yolov5/
cd yolov5 
python3 gen_wts.py -w ./weights/yolov5s.pt -o ./weights/yolov5s.wts
// a file 'yolov5s.wts' will be generated.

You can get yolov5s.wts model in yolov5/weights/

  1. Build tensorrtx/yolov5 and get tensorrt engine
cd tensorrtx/yolov5
// update CLASS_NUM in yololayer.h if your model is trained on custom dataset
mkdir build
cd build
cp {ultralytics}/yolov5/yolov5s.wts {tensorrtx}/yolov5/build
cmake ..
make
// yolov5s
sudo ./yolov5 -s yolov5s.wts yolov5s.engine s
// test your engine file
sudo ./yolov5 -d yolov5s.engine ../samples

Then you get the yolov5s.engine, and you can put yolov5s.engine in My project. For example

cd {yolov5-deepsort-tensorrt}
mkdir resources
cp {tensorrtx}/yolov5/build/yolov5s.engine {yolov5-deepsort-tensorrt}/resources
  1. Get deepsort engine file You can get deepsort pretrained model in this drive url and ckpt.t7 is ok.
git clone https://github.com/RichardoMrMu/deepsort-tensorrt.git
// 根据github的说明
cp {deepsort-tensorrt}/exportOnnx.py {deep_sort_pytorch}/
python3 exportOnnx.py
mv {deep_sort_pytorch}/deepsort.onnx {deepsort-tensorrt}/resources
cd {deepsort-tensorrt}
mkdir build
cd build
cmake ..
make 
./onnx2engine ../resources/deepsort.onnx ../resources/deepsort.engine
// test
./demo ../resource/deepsort.engine ../resources/track.txt

After all 5 step, you can get the yolov5s.engine and deepsort.engine.

You may face some problems in getting yolov5s.engine and deepsort.engine, you can upload your issue in github or csdn artical.

Different versions of yolov5

Currently, tensorrt support yolov5 v1.0(yolov5s only), v2.0, v3.0, v3.1, v4.0 and v5.0.

  • For yolov5 v5.0, download .pt from yolov5 release v5.0, git clone -b v5.0 https://github.com/ultralytics/yolov5.git and git clone https://github.com/wang-xinyu/tensorrtx.git, then follow how-to-run in current page.
  • For yolov5 v4.0, download .pt from yolov5 release v4.0, git clone -b v4.0 https://github.com/ultralytics/yolov5.git and git clone -b yolov5-v4.0 https://github.com/wang-xinyu/tensorrtx.git, then follow how-to-run in tensorrtx/yolov5-v4.0.
  • For yolov5 v3.1, download .pt from yolov5 release v3.1, git clone -b v3.1 https://github.com/ultralytics/yolov5.git and git clone -b yolov5-v3.1 https://github.com/wang-xinyu/tensorrtx.git, then follow how-to-run in tensorrtx/yolov5-v3.1.
  • For yolov5 v3.0, download .pt from yolov5 release v3.0, git clone -b v3.0 https://github.com/ultralytics/yolov5.git and git clone -b yolov5-v3.0 https://github.com/wang-xinyu/tensorrtx.git, then follow how-to-run in tensorrtx/yolov5-v3.0.
  • For yolov5 v2.0, download .pt from yolov5 release v2.0, git clone -b v2.0 https://github.com/ultralytics/yolov5.git and git clone -b yolov5-v2.0 https://github.com/wang-xinyu/tensorrtx.git, then follow how-to-run in tensorrtx/yolov5-v2.0.
  • For yolov5 v1.0, download .pt from yolov5 release v1.0, git clone -b v1.0 https://github.com/ultralytics/yolov5.git and git clone -b yolov5-v1.0 https://github.com/wang-xinyu/tensorrtx.git, then follow how-to-run in tensorrtx/yolov5-v1.0.
Config
  • Choose the model s/m/l/x/s6/m6/l6/x6 from command line arguments.
  • Input shape defined in yololayer.h
  • Number of classes defined in yololayer.h, DO NOT FORGET TO ADAPT THIS, If using your own model
  • INT8/FP16/FP32 can be selected by the macro in yolov5.cpp, INT8 need more steps, pls follow How to Run first and then go the INT8 Quantization below
  • GPU id can be selected by the macro in yolov5.cpp
  • NMS thresh in yolov5.cpp
  • BBox confidence thresh in yolov5.cpp
  • Batch size in yolov5.cpp

Run Your Custom Model

You may need train your own model and transfer your trained-model to tensorRT. So you can follow the following steps.

  1. Train Custom Model You can follow the official wiki to train your own model on your dataset. For example, I choose yolov5-s to train my model.
  2. Transfer Custom Model Just like tensorRT official guideline.When your follow Generate yolov5 model to get yolov5 and tensorrt rep, next step is to transfer your pytorch model to tensorrt. Before this, you need to change yololayer.h file 20,21 and 22 line(CLASS_NUM,INPUT_H,INPUT_W) to your own parameters.
// before 
static constexpr int CLASS_NUM = 80; // 20
static constexpr int INPUT_H = 640;  // 21  yolov5's input height and width must be divisible by 32.
static constexpr int INPUT_W = 640; // 22

// after 
// if your model is 2 classfication and image size is 416*416
static constexpr int CLASS_NUM = 2; // 20
static constexpr int INPUT_H = 416;  // 21  yolov5's input height and width must be divisible by 32.
static constexpr int INPUT_W = 416; // 22
cd {tensorrtx}/yolov5/
// update CLASS_NUM in yololayer.h if your model is trained on custom dataset

mkdir build
cd build
cp {ultralytics}/yolov5/yolov5s.wts {tensorrtx}/yolov5/build
cmake ..
make
sudo ./yolov5 -s [.wts] [.engine] [s/m/l/x/s6/m6/l6/x6 or c/c6 gd gw]  // serialize model to plan file
sudo ./yolov5 -d [.engine] [image folder]  // deserialize and run inference, the images in [image folder] will be processed.
// For example yolov5s
sudo ./yolov5 -s yolov5s.wts yolov5s.engine s
sudo ./yolov5 -d yolov5s.engine ../samples
// For example Custom model with depth_multiple=0.17, width_multiple=0.25 in yolov5.yaml
sudo ./yolov5 -s yolov5_custom.wts yolov5.engine c 0.17 0.25
sudo ./yolov5 -d yolov5.engine ../samples

In this way, you can get your own tensorrt yolov5 model. Enjoy it!

Other Project

About

A c++ implementation of yolov5 head deepsort detector

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 91.3%
  • Cuda 7.2%
  • CMake 1.2%
  • C 0.3%