Skip to content

royal-dargon/MDSE

Repository files navigation

MDSE

This is the repository of MODALITY-DEPENDENT SENTIMENTS EXPLORING FOR MULTI-MODAL SENTIMENT CLASSIFICATION

  • Overview of the proposed MDSE framework

MDSE on Multimodal Sentiment Classification Results

  • MVSA-S datasets
Model ACC W-F1
MultiSentiNet 69.84 69.63
Co-MN-Hop 70.51 70.01
MFF 71.44 71.06
MGNNS 73.77 72.70
TBNMD 75.22 73.46
CLMLF 75.33 73.46
MDSE(Base/VGG-19) 74.33 74.38
MDSE(VGG-19) 74.22 73.20
MDSE(Base/ResNet) 73.33 72.74
MDSE(ResNet) 75.93 74.83
MDSE(Base/VIT) 73.77 72.52
MDSE(ours) 76.22 75.71
  • MVSA-M datasets
Model(MVSA-M) ACC W-F1
MultiSentiNet 68.86 68.11
Co-MN-Hop 68.92 68.83
MFF 69.62 69.35
MGNNS 72.49 69.34
TBNMD 70.72 67.94
CLMLF 72.00 69.83
MDSE(Base/VGG-19) 70.17 68.74
MDSE(VGG-19) 71.23 68.10
MDSE(Base/ResNet) 70.29 67.65
MDSE(ResNet) 71.97 69.92
MDSE(Base/VIT) 71.00 67.83
MDSE(ours) 72.31 70.12
  • TWITTER-15 datasets
Model(TWITTER-15) ACC M-F1
TomBERT 77.15 71.75
CapTrBERT 78.01 73.25
TBNMD 76.73 71.19
CLMLF 78.11 74.60
MDSE(Base/VGG-19) 73.44 73.14
MDSE(VGG-19) 75.77 73.22
MDSE(Base/ResNet) 75.04 73.75
MDSE(ResNet) 78.05 74.92
MDSE(Base/VIT) 75.60 74.28
MDSE(ours) 78.49 75.29
  • TWITTER-17 datasets
Model ACC M-F1
TomBERT 70.50 68.04
CapTrBERT 72.30 70.20
TBNMD 71.52 70.18
CLMLF 70.98 69.13
MDSE(Base/VGG-19) 70.58 70.52
MDSE(VGG-19) 70.98 71.02
MDSE(Base/ResNet) 70.91 70.92
MDSE(ResNet) 71.93 71.88
MDSE(Base/VIT) 70.98 70.91
MDSE(ours) 72.77 72.63

Visual Example

  • Visualizations of sentiment classification scores

Above is a visual analysis of the effect of the MDSE model on private features learning(PFL). In the first image-text data pair, the labels of image and text are neutral and positive, respectively, and the final label is positive. From the result, if the text private feature learning(tPFL) module is ignored, the final result will be wrong, indicating that the part marked by the green box in the text data is important to the result. In the second data pair, the image part is marked with a green box as the private feature of the image, and it can be found that if ignored, the result will become neutral.

@inproceedings{li2024modality,
  title={Modality-Dependent Sentiments Exploring for Multi-Modal Sentiment Classification},
  author={Li, Jingzhe and Wang, Chengji and Luo, Zhiming and Wu, Yuxian and Jiang, Xingpeng},
  booktitle={ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={7930--7934},
  year={2024},
  organization={IEEE}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages