Skip to content

LightGBM + Optuna: Auto train LightGBM directly from CSV files, Auto tune them using Optuna, Auto serve best model using FastAPI. Inspired by Abhishek Thakur's AutoXGB.

License

Notifications You must be signed in to change notification settings

rishiraj/autolgbm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AutoLGBM

LightGBM + Optuna: no brainer

  • auto train lightgbm directly from CSV files
  • auto tune lightgbm using optuna
  • auto serve best lightgbm model using fastapi

NOTE: PRs are currently

  • not accepted. If there are issues/problems, please create an issue.
  • accepted. If there are issues/problems, please solve with a PR.

Inspired by Abhishek Thakur's AutoXGB.

Installation

Install using pip

pip install autolgbm

Usage

Training a model using AutoLGBM is a piece of cake. All you need is some tabular data.

Parameters

###############################################################################
### required parameters
###############################################################################

# path to training data
train_filename = "data_samples/binary_classification.csv"

# path to output folder to store artifacts
output = "output"

###############################################################################
### optional parameters
###############################################################################

# path to test data. if specified, the model will be evaluated on the test data
# and test_predictions.csv will be saved to the output folder
# if not specified, only OOF predictions will be saved
# test_filename = "test.csv"
test_filename = None

# task: classification or regression
# if not specified, the task will be inferred automatically
# task = "classification"
# task = "regression"
task = None

# an id column
# if not specified, the id column will be generated automatically with the name `id`
# idx = "id"
idx = None

# target columns are list of strings
# if not specified, the target column be assumed to be named `target`
# and the problem will be treated as one of: binary classification, multiclass classification,
# or single column regression
# targets = ["target"]
# targets = ["target1", "target2"]
targets = ["income"]

# features columns are list of strings
# if not specified, all columns except `id`, `targets` & `kfold` columns will be used
# features = ["col1", "col2"]
features = None

# categorical_features are list of strings
# if not specified, categorical columns will be inferred automatically
# categorical_features = ["col1", "col2"]
categorical_features = None

# use_gpu is boolean
# if not specified, GPU is not used
# use_gpu = True
# use_gpu = False
use_gpu = True

# number of folds to use for cross-validation
# default is 5
num_folds = 5

# random seed for reproducibility
# default is 42
seed = 42

# number of optuna trials to run
# default is 1000
# num_trials = 1000
num_trials = 100

# time_limit for optuna trials in seconds
# if not specified, timeout is not set and all trials are run
# time_limit = None
time_limit = 360

# if fast is set to True, the hyperparameter tuning will use only one fold
# however, the model will be trained on all folds in the end
# to generate OOF predictions and test predictions
# default is False
# fast = False
fast = False

Python API

To train a new model, you can run:

from autolgbm import AutoLGBM


# required parameters:
train_filename = "data_samples/binary_classification.csv"
output = "output"

# optional parameters
test_filename = None
task = None
idx = None
targets = ["income"]
features = None
categorical_features = None
use_gpu = True
num_folds = 5
seed = 42
num_trials = 100
time_limit = 360
fast = False

# Now its time to train the model!
algbm = AutoLGBM(
    train_filename=train_filename,
    output=output,
    test_filename=test_filename,
    task=task,
    idx=idx,
    targets=targets,
    features=features,
    categorical_features=categorical_features,
    use_gpu=use_gpu,
    num_folds=num_folds,
    seed=seed,
    num_trials=num_trials,
    time_limit=time_limit,
    fast=fast,
)
algbm.train()

CLI

Train the model using the autolgbm train command. The parameters are same as above.

autolgbm train \
 --train_filename datasets/30train.csv \
 --output outputs/30days \
 --test_filename datasets/30test.csv \
 --use_gpu

You can also serve the trained model using the autolgbm serve command.

autolgbm serve --model_path outputs/mll --host 0.0.0.0 --debug

To know more about a command, run:

`autolgbm <command> --help` 
autolgbm train --help


usage: autolgbm <command> [<args>] train [-h] --train_filename TRAIN_FILENAME [--test_filename TEST_FILENAME] --output
                                        OUTPUT [--task {classification,regression}] [--idx IDX] [--targets TARGETS]
                                        [--num_folds NUM_FOLDS] [--features FEATURES] [--use_gpu] [--fast]
                                        [--seed SEED] [--time_limit TIME_LIMIT]

optional arguments:
  -h, --help            show this help message and exit
  --train_filename TRAIN_FILENAME
                        Path to training file
  --test_filename TEST_FILENAME
                        Path to test file
  --output OUTPUT       Path to output directory
  --task {classification,regression}
                        User defined task type
  --idx IDX             ID column
  --targets TARGETS     Target column(s). If there are multiple targets, separate by ';'
  --num_folds NUM_FOLDS
                        Number of folds to use
  --features FEATURES   Features to use, separated by ';'
  --use_gpu             Whether to use GPU for training
  --fast                Whether to use fast mode for tuning params. Only one fold will be used if fast mode is set
  --seed SEED           Random seed
  --time_limit TIME_LIMIT
                        Time limit for optimization

About

LightGBM + Optuna: Auto train LightGBM directly from CSV files, Auto tune them using Optuna, Auto serve best model using FastAPI. Inspired by Abhishek Thakur's AutoXGB.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published