Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Precision session level metric #2580

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions torchrec/metrics/metric_module.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@
from torchrec.metrics.ne_positive import NEPositiveMetric
from torchrec.metrics.output import OutputMetric
from torchrec.metrics.precision import PrecisionMetric
from torchrec.metrics.precision_session import PrecisionSessionMetric
from torchrec.metrics.rauc import RAUCMetric
from torchrec.metrics.rec_metric import RecMetric, RecMetricList
from torchrec.metrics.recall import RecallMetric
Expand Down Expand Up @@ -80,6 +81,7 @@
RecMetricEnum.WEIGHTED_AVG: WeightedAvgMetric,
RecMetricEnum.TOWER_QPS: TowerQPSMetric,
RecMetricEnum.RECALL_SESSION_LEVEL: RecallSessionMetric,
RecMetricEnum.PRECISION_SESSION_LEVEL: PrecisionSessionMetric,
RecMetricEnum.ACCURACY: AccuracyMetric,
RecMetricEnum.NDCG: NDCGMetric,
RecMetricEnum.XAUC: XAUCMetric,
Expand Down
1 change: 1 addition & 0 deletions torchrec/metrics/metrics_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@ class RecMetricEnum(RecMetricEnumBase):
MAE = "mae"
MULTICLASS_RECALL = "multiclass_recall"
RECALL_SESSION_LEVEL = "recall_session_level"
PRECISION_SESSION_LEVEL = "precision_session_level"
WEIGHTED_AVG = "weighted_avg"
TOWER_QPS = "tower_qps"
ACCURACY = "accuracy"
Expand Down
2 changes: 2 additions & 0 deletions torchrec/metrics/metrics_namespace.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,7 @@ class MetricName(MetricNameBase):
GROUPED_AUPRC = "grouped_auprc"
GROUPED_RAUC = "grouped_rauc"
RECALL_SESSION_LEVEL = "recall_session_level"
PRECISION_SESSION_LEVEL = "precision_session_level"
MULTICLASS_RECALL = "multiclass_recall"
WEIGHTED_AVG = "weighted_avg"
TOWER_QPS = "qps"
Expand Down Expand Up @@ -107,6 +108,7 @@ class MetricNamespace(MetricNamespaceBase):

WEIGHTED_AVG = "weighted_avg"
RECALL_SESSION_LEVEL = "recall_session_level"
PRECISION_SESSION_LEVEL = "precision_session_level"

TOWER_QPS = "qps"
NDCG = "ndcg"
Expand Down
253 changes: 253 additions & 0 deletions torchrec/metrics/precision_session.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,253 @@
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

# pyre-strict

import logging
from typing import Any, cast, Dict, List, Optional, Set, Type, Union

import torch
from torch import distributed as dist
from torchrec.metrics.metrics_config import RecTaskInfo, SessionMetricDef
from torchrec.metrics.metrics_namespace import MetricName, MetricNamespace, MetricPrefix
from torchrec.metrics.rec_metric import (
MetricComputationReport,
RecComputeMode,
RecMetric,
RecMetricComputation,
RecMetricException,
)
from torchrec.metrics.recall_session import (
_calc_num_true_pos,
_validate_model_outputs,
ranking_within_session,
)

logger: logging.Logger = logging.getLogger(__name__)

NUM_TRUE_POS = "num_true_pos"
NUM_FALSE_POS = "num_false_pos"


def _calc_num_false_pos(
labels: torch.Tensor, predictions: torch.Tensor, weights: torch.Tensor
) -> torch.Tensor:
# predictions are expected to be 0 or 1 integers.
num_false_pos = torch.sum(
weights * (1 - labels) * (predictions == 1).double(), dim=-1
)
return num_false_pos


def _calc_precision(
num_true_pos: torch.Tensor, num_false_pos: torch.Tensor
) -> torch.Tensor:
# if num_true_pos + num_false_pos == 0 then we set precision = NaN by default.
precision = torch.tensor([float("nan")])
if (num_true_pos + num_false_pos).item() != 0:
precision = num_true_pos / (num_true_pos + num_false_pos)
else:
logger.warning(
"precision = NaN. Likely, it means that there were no positive predictions passed to the metric yet."
" Please, debug if you expect every batch to include positive predictions."
)
return precision


class PrecisionSessionMetricComputation(RecMetricComputation):
r"""
This class implements the RecMetricComputation for precision on session level.

The constructor arguments are defined in RecMetricComputation.
See the docstring of RecMetricComputation for more detail.

"""

def __init__(
self,
*args: Any,
session_metric_def: SessionMetricDef,
**kwargs: Any,
) -> None:
super().__init__(*args, **kwargs)
self._add_state(
NUM_TRUE_POS,
torch.zeros(self._n_tasks, dtype=torch.double),
add_window_state=True,
dist_reduce_fx="sum",
persistent=True,
)
self._add_state(
NUM_FALSE_POS,
torch.zeros(self._n_tasks, dtype=torch.double),
add_window_state=True,
dist_reduce_fx="sum",
persistent=True,
)
self.top_threshold: Optional[int] = session_metric_def.top_threshold
self.run_ranking_of_labels: bool = session_metric_def.run_ranking_of_labels
self.session_var_name: Optional[str] = session_metric_def.session_var_name

def update(
self,
*,
predictions: Optional[torch.Tensor],
labels: torch.Tensor,
weights: Optional[torch.Tensor],
**kwargs: Dict[str, Any],
) -> None:
"""
Args:
predictions (torch.Tensor): tensor of size (n_task, n_examples)
labels (torch.Tensor): tensor of size (n_task, n_examples)
weights (torch.Tensor): tensor of size (n_task, n_examples)
session (torch.Tensor): Optional tensor of size (n_task, n_examples) that specifies the groups of
predictions/labels per batch.
"""

if (
"required_inputs" not in kwargs
or self.session_var_name not in kwargs["required_inputs"]
):
raise RecMetricException(
"Need the {} input to update the session metric".format(
self.session_var_name
)
)
# pyre-ignore
session = kwargs["required_inputs"][self.session_var_name]
if predictions is None or weights is None or session is None:
raise RecMetricException(
"Inputs 'predictions', 'weights' and 'session' should not be None for PrecisionSessionMetricComputation update"
)
_validate_model_outputs(labels, predictions, weights, session)

predictions = predictions.double()
labels = labels.double()
weights = weights.double()

num_samples = predictions.shape[-1]
for state_name, state_value in self.get_precision_states(
labels=labels, predictions=predictions, weights=weights, session=session
).items():
state = getattr(self, state_name)
state += state_value
self._aggregate_window_state(state_name, state_value, num_samples)

def _compute(self) -> List[MetricComputationReport]:
return [
MetricComputationReport(
name=MetricName.PRECISION_SESSION_LEVEL,
metric_prefix=MetricPrefix.LIFETIME,
value=_calc_precision(
num_true_pos=cast(torch.Tensor, getattr(self, NUM_TRUE_POS)),
num_false_pos=cast(torch.Tensor, getattr(self, NUM_FALSE_POS)),
),
),
MetricComputationReport(
name=MetricName.PRECISION_SESSION_LEVEL,
metric_prefix=MetricPrefix.WINDOW,
value=_calc_precision(
num_true_pos=self.get_window_state(NUM_TRUE_POS),
num_false_pos=self.get_window_state(NUM_FALSE_POS),
),
),
]

def get_precision_states(
self,
labels: torch.Tensor,
predictions: torch.Tensor,
weights: torch.Tensor,
session: torch.Tensor,
) -> Dict[str, torch.Tensor]:
predictions_ranked = ranking_within_session(predictions, session)
# pyre-fixme[58]: `<` is not supported for operand types `Tensor` and
# `Optional[int]`.
predictions_labels = (predictions_ranked < self.top_threshold).to(torch.int32)
if self.run_ranking_of_labels:
labels_ranked = ranking_within_session(labels, session)
# pyre-fixme[58]: `<` is not supported for operand types `Tensor` and
# `Optional[int]`.
labels = (labels_ranked < self.top_threshold).to(torch.int32)
num_true_pos = _calc_num_true_pos(labels, predictions_labels, weights)
num_false_pos = _calc_num_false_pos(labels, predictions_labels, weights)

return {NUM_TRUE_POS: num_true_pos, NUM_FALSE_POS: num_false_pos}


class PrecisionSessionMetric(RecMetric):
_namespace: MetricNamespace = MetricNamespace.PRECISION_SESSION_LEVEL
_computation_class: Type[RecMetricComputation] = PrecisionSessionMetricComputation

def __init__(
self,
world_size: int,
my_rank: int,
batch_size: int,
tasks: List[RecTaskInfo],
compute_mode: RecComputeMode = RecComputeMode.UNFUSED_TASKS_COMPUTATION,
window_size: int = 100,
fused_update_limit: int = 0,
process_group: Optional[dist.ProcessGroup] = None,
**kwargs: Any,
) -> None:
if compute_mode == RecComputeMode.FUSED_TASKS_COMPUTATION:
raise RecMetricException(
"Fused computation is not supported for precision session-level metrics"
)

if fused_update_limit > 0:
raise RecMetricException(
"Fused update is not supported for precision session-level metrics"
)
for task in tasks:
if task.session_metric_def is None:
raise RecMetricException(
"Please, specify the session metric definition"
)
session_metric_def = task.session_metric_def
if session_metric_def.top_threshold is None:
raise RecMetricException("Please, specify the top threshold")

super().__init__(
world_size=world_size,
my_rank=my_rank,
batch_size=batch_size,
tasks=tasks,
compute_mode=compute_mode,
window_size=window_size,
fused_update_limit=fused_update_limit,
process_group=process_group,
**kwargs,
)

def _get_task_kwargs(
self, task_config: Union[RecTaskInfo, List[RecTaskInfo]]
) -> Dict[str, Any]:
if isinstance(task_config, list):
raise RecMetricException("Session metric can only take one task at a time")

if task_config.session_metric_def is None:
raise RecMetricException("Please, specify the session metric definition")

return {"session_metric_def": task_config.session_metric_def}

def _get_task_required_inputs(
self, task_config: Union[RecTaskInfo, List[RecTaskInfo]]
) -> Set[str]:
if isinstance(task_config, list):
raise RecMetricException("Session metric can only take one task at a time")

if task_config.session_metric_def is None:
raise RecMetricException("Please, specify the session metric definition")

return (
{task_config.session_metric_def.session_var_name}
if task_config.session_metric_def.session_var_name
else set()
)
Loading
Loading