Skip to content

Commit

Permalink
RLHF end2end example
Browse files Browse the repository at this point in the history
  • Loading branch information
apbard committed Jun 27, 2023
1 parent c67b4be commit 01a6491
Show file tree
Hide file tree
Showing 15 changed files with 977 additions and 0 deletions.
4 changes: 4 additions & 0 deletions examples/rlhf/.gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
*.png
*.bin
*.pt
*.json
45 changes: 45 additions & 0 deletions examples/rlhf/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
# RLHF example

This example uses RLHF (Reinforcement Learning with Human Feedback) to train a language model to summarize Reddit posts.

## Getting started

Make sure you have PyTorch 2.0 installed. You can find installation instructions [here](https://pytorch.org/get-started/locally/).

From this directory, you can install extra requirements for running these examples with

```sh
pip install -r requirements.txt
```

## Training the models
### Training the transformer

Once the data has been prepared, you can train the GPT model.

```sh
python train.py
```

Default configuration can be found in `config/train.yaml`, and any option can be overridden with command-line arguments, for example to run the training script with a different batch size

```sh
python train.py --batch_size=128
```
> **_NOTE:_** Apple Silicon Macbooks users make sure to use `--device=mps` and prepend all commands with `PYTORCH_ENABLE_MPS_FALLBACK=1` to enable CPU fallback
### Training the reward model

Next you can train the reward model with

```sh
python train_reward.py
```

### Training the final model with RLHF

To train the final model run

```sh
python train_rlhf.py
```
30 changes: 30 additions & 0 deletions examples/rlhf/config/train.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
io:
eval_interval: 200
log_interval: 50
eval_iters: 100
data:
batch_size: 16 # if gradient_accumulation_steps > 1, this is the micro-batch size
block_size: 550
model:
name_or_path: gpt2 # gpt2 for pre-trained, local path for checkpoint
out_dir: ./out
dropout: 0.1 # for pretraining 0 is good, for finetuning try 0.1+
train:
grad_clip: 1.0 # clip gradients at this value, or disable if == 0.0
max_iters: 5000 # total number of training iterations
gradient_accumulation_steps: 2 # used to simulate larger batch sizes
always_save_checkpoint: False # if True, always save a checkpoint after each evaluation in out_dir
decay_lr: True # whether to decay the learning rate
optimizer:
# keyword arguments for torch.optim.AdamW
lr: 1.0e-5
weight_decay: 1.0e-1
betas: [0.9, 0.95]
scheduler:
# keyword arguments for torch.optim.lr_scheduler.CosineAnnealingLR
T_max: 5000 # maximum number of iterations
eta_min: 1.0e-6 # minimum learning rate
sys:
device: cuda # examples: cpu, cuda, cuda:0, cuda:1 etc., or try mps on macbooks
dtype: bfloat16 # float32, bfloat16, or float16, the latter will auto implement a GradScaler
compile: True # use PyTorch 2.0 to compile the model to be faster
32 changes: 32 additions & 0 deletions examples/rlhf/config/train_reward.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
io:
eval_interval: 200
log_interval: 50
eval_iters: 100
data:
batch_size: 16 # if gradient_accumulation_steps > 1, this is the micro-batch size
block_size: 550
model:
name_or_path: ./out
dropout: 0.1 # for pretraining 0 is good, for finetuning try 0.1+
reward_model:
out_dir: ./out_reward
init_from: scratch # 'scratch' or 'resume' - if "resume" model will be loaded from out_dir_reward
train:
grad_clip: 1.0 # clip gradients at this value, or disable if == 0.0
max_iters: 20000 # total number of training iterations
gradient_accumulation_steps: 2 # used to simulate larger batch sizes
always_save_checkpoint: False # if True, always save a checkpoint after each eval
decay_lr: False # whether to decay the learning rate
optimizer:
# keyword arguments for torch.optim.AdamW
lr: 1.0e-5
weight_decay: 1.0e-1
betas: [0.9, 0.95]
scheduler:
# keyword arguments for torch.optim.lr_scheduler.CosineAnnealingLR
T_max: 20000
eta_min: 1.0e-6
sys:
device: cuda # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1' etc., or try 'mps' on macbooks
dtype: bfloat16 # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler
compile: True # use PyTorch 2.0 to compile the model to be faster
36 changes: 36 additions & 0 deletions examples/rlhf/config/train_rlhf.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
io:
eval_interval: 6
log_interval: 1
eval_iters: 10
data:
batch_size: 4 # if gradient_accumulation_steps > 1, this is the micro-batch size
block_size: 550
model:
name_or_path: ./out
out_dir: ./out_rlhf
dropout: 0.1 # for pretraining 0 is good, for finetuning try 0.1+
reward_model:
name_or_path: ./out_reward
train:
grad_clip: 1.0
max_epochs: 1000 # total number of training iterations
always_save_checkpoint: True # if True, always save a checkpoint after each eval
decay_lr: True
optimizer:
# keyword arguments for torch.optim.AdamW
lr: 5.0e-5
weight_decay: 0.0 # 01
betas: [0.9, 0.999]
scheduler:
# keyword arguments for torch.optim.lr_scheduler.CosineAnnealingLR
T_max: 3000 # max_epochs * num_rollouts / ppo_batch_size
eta_min: 5.0e-6
ppo:
episode_length: 50
ppo_batch_size: 16
ppo_num_epochs: 3
num_rollouts_per_epoch: 32
sys:
device: cuda # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1' etc., or try 'mps' on macbooks
dtype: bfloat16 # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler
compile: True # use PyTorch 2.0 to compile the model to be faster
3 changes: 3 additions & 0 deletions examples/rlhf/data/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
from torchrl.data.rlhf.prompt import get_prompt_dataloader_tldr

__all__ = ["get_prompt_dataloader_tldr"]
4 changes: 4 additions & 0 deletions examples/rlhf/models/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
29 changes: 29 additions & 0 deletions examples/rlhf/models/actor_critic.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from torchrl.modules.tensordict_module.actors import LMActorCritic
from torchrl.modules.tensordict_module.common import VmapModule

from .transformer import init_transformer

__all__ = ["init_actor_critic"]


def init_actor_critic(transformer_name_or_path, dropout, device, compile_):
base_model = init_transformer(
transformer_name_or_path,
dropout,
device,
as_tensordictmodule=False,
compile_=compile_,
inference=True,
)
model = LMActorCritic(base_model)
model.to(device)
model.eval()
actor = model.get_policy_operator()
critic = model.get_value_operator()
critic_head = model.get_value_head()

return actor, VmapModule(critic), critic_head, base_model
34 changes: 34 additions & 0 deletions examples/rlhf/models/reward.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
from tensordict.nn import TensorDictModule

from torchrl.modules.models.rlhf import GPT2RewardModel


def init_reward_model(
transformer_path=None, reward_model_path=None, device=None, compile_=False
):
if not ((transformer_path is None) ^ (reward_model_path is None)):
raise ValueError(
"Exactly one of transformer_path or reward_model_path should be specified"
)
if transformer_path is not None:
model = GPT2RewardModel(transformer_path)
else:
model = GPT2RewardModel.from_pretrained(reward_model_path)

model.to(device)
if compile_:
print("Compiling the reward model...")
model = torch.compile(model)

model = TensorDictModule(
model,
in_keys=["input_ids", "attention_mask"],
out_keys=["rewards", "end_scores"],
)
return model
44 changes: 44 additions & 0 deletions examples/rlhf/models/transformer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from tensordict.nn import TensorDictModule
from transformers import GPT2LMHeadModel


def init_transformer(
name_or_path,
dropout,
device,
compile_,
as_tensordictmodule=True,
inference=False,
):
model_kwargs = {
"resid_pdrop": dropout,
"embd_pdrop": dropout,
"attn_pdrop": dropout,
"summary_first_dropout": dropout,
}
model = GPT2LMHeadModel.from_pretrained(
name_or_path, return_dict=False, **model_kwargs
)
model.to(device)

if compile_:
# TODO: logging instead of printing?
print("Compiling transformer model...")
model = torch.compile(model)

if as_tensordictmodule:
model = TensorDictModule(
model,
in_keys={
"input_ids": "input_ids",
"attention_mask": "attention_mask",
"labels": "labels",
},
out_keys=["logits"] if inference else ["loss", "logits"],
)
return model
11 changes: 11 additions & 0 deletions examples/rlhf/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
datasets
hydra-core
matplotlib
numpy
PyYAML
requests
tiktoken
tqdm
transformers
git+https://github.com/pytorch/rl
git+https://github.com/pytorch-labs/tensordict
Loading

0 comments on commit 01a6491

Please sign in to comment.