Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[feat](linkedin dag): add LinkedIn insight dag into airflow #148

Merged
merged 4 commits into from
Sep 1, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
70 changes: 25 additions & 45 deletions .github/workflows/dockerimage.yml
Original file line number Diff line number Diff line change
@@ -1,65 +1,45 @@
name: Docker Image CI

on:
push:
branches: [ master, prod ]
pull_request:
branches: [ master, prod ]
env:
RC_NAME: davidtnfsh/pycon_etl

RC_NAME: asia-east1-docker.pkg.dev/${{ secrets.GCP_PROJECT_ID }}/data-team/pycon-etl
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Login to docker hub
uses: actions-hub/docker/login@master
env:
DOCKER_USERNAME: ${{ secrets.DOCKER_USERNAME }}
DOCKER_PASSWORD: ${{ secrets.DOCKER_PASSWORD }}

- uses: actions/checkout@v4
- name: Authenticate to Google Cloud
uses: google-github-actions/auth@v1
with:
credentials_json: ${{ secrets.GCP_SERVICE_ACCOUNT_KEY }}
- name: Configure docker to use gcloud command-line tool as a credential helper
run: |
gcloud auth configure-docker asia-east1-docker.pkg.dev
- name: Pull cache
run: |
docker login -u ${{ secrets.DOCKER_USERNAME }} -p ${{ secrets.DOCKER_PASSWORD }}
docker pull ${RC_NAME}:cache

docker pull ${RC_NAME}:cache || true
- name: Build the Docker image
if: always()
run: |
docker build -t ${RC_NAME}:${GITHUB_SHA} --cache-from ${RC_NAME}:cache .
docker tag ${RC_NAME}:${GITHUB_SHA} ${RC_NAME}:cache
docker build -t ${RC_NAME}:cache --cache-from ${RC_NAME}:cache .
docker build -t ${RC_NAME}:test --cache-from ${RC_NAME}:cache -f Dockerfile.test .
docker tag ${RC_NAME}:${GITHUB_SHA} ${RC_NAME}:staging
docker tag ${RC_NAME}:${GITHUB_SHA} ${RC_NAME}:latest

- name: Run test
run: |
docker run -d --rm -p 8080:8080 --name airflow -v $(pwd)/dags:/usr/local/airflow/dags -v $(pwd)/fixtures:/usr/local/airflow/fixtures ${RC_NAME}:test webserver
docker run -d --rm -p 8080:8080 --name airflow -v $(pwd)/dags:/opt/airflow/dags -v $(pwd)/fixtures:/opt/airflow/fixtures ${RC_NAME}:test webserver
sleep 10
docker exec airflow bash -c "airflow test OPENING_CRAWLER_V1 CRAWLER 2020-01-01"
docker exec airflow bash -c "airflow test QUESTIONNAIRE_2_BIGQUERY TRANSFORM_data_questionnaire 2020-09-29"

- name: Push Cache to docker registry
uses: actions-hub/docker@master
if: always()
with:
args: push ${RC_NAME}:cache

- name: Push GITHUB_SHA to docker registry
uses: actions-hub/docker@master
if: always()
with:
args: push ${RC_NAME}:${GITHUB_SHA}

- name: Push staging to docker registry
uses: actions-hub/docker@master
if: ${{ github.ref == 'refs/heads/master' }} && success()
with:
args: push ${RC_NAME}:staging

- name: Push prod version to docker registry
uses: actions-hub/docker@master
- name: Push cache to Google Container Registry
if: success()
run: |
docker push ${RC_NAME}:cache
- name: Push staging to Google Container Registry
if: github.ref == 'refs/heads/master' && success()
run: |
docker tag ${RC_NAME}:cache ${RC_NAME}:staging
docker push ${RC_NAME}:staging
- name: Push prod version to Google Container Registry
if: github.ref == 'refs/heads/prod' && success()
with:
args: push ${RC_NAME}:latest
run: |
docker tag ${RC_NAME}:cache ${RC_NAME}:latest
docker push ${RC_NAME}:latest
36 changes: 36 additions & 0 deletions dags/ods/linkedin_post_insights/dags.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
from datetime import datetime, timedelta

from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from ods.linkedin_post_insights import udfs

DEFAULT_ARGS = {
"owner": "Angus Yang",
"depends_on_past": False,
"start_date": datetime(2023, 6, 14, 0),
"retries": 2,
"retry_delay": timedelta(minutes=5),
"on_failure_callback": lambda x: "Need to send notification to Discord!",
}
dag = DAG(
"LINKEDIN_POST_INSIGHTS_V1",
default_args=DEFAULT_ARGS,
schedule_interval="5 8 * * *",
max_active_runs=1,
catchup=False,
)
with dag:
CREATE_TABLE_IF_NEEDED = PythonOperator(
task_id="CREATE_TABLE_IF_NEEDED", python_callable=udfs.create_table_if_needed,
)

SAVE_TWITTER_POSTS_AND_INSIGHTS = PythonOperator(
task_id="SAVE_LINKEDIN_POSTS_AND_INSIGHTS",
python_callable=udfs.save_posts_and_insights,
)

CREATE_TABLE_IF_NEEDED >> SAVE_TWITTER_POSTS_AND_INSIGHTS


if __name__ == "__main__":
dag.cli()
226 changes: 226 additions & 0 deletions dags/ods/linkedin_post_insights/udfs.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,226 @@
import logging
import os
from datetime import datetime
from typing import List, Optional

import requests
from airflow.models import Variable
from google.cloud import bigquery

logger = logging.getLogger(__name__)


def create_table_if_needed() -> None:
client = bigquery.Client(project=os.getenv("BIGQUERY_PROJECT"))
post_sql = """
CREATE TABLE IF NOT EXISTS `pycontw-225217.ods.ods_pycontw_linkedin_posts` (
id STRING,
created_at TIMESTAMP,
message STRING
)
"""
client.query(post_sql)
insights_sql = """
CREATE TABLE IF NOT EXISTS `pycontw-225217.ods.ods_pycontw_linkedin_posts_insights` (
post_id STRING,
query_time TIMESTAMP,
period STRING,
favorite INTEGER,
reply INTEGER,
retweet INTEGER,
views INTEGER
)
"""
client.query(insights_sql)

# Example output from the Rapid API, not all fields will exists for a specific post
#
# {
# "text": "For your kids in senior high.",
# "totalReactionCount": 6,
# "likeCount": 6,
# "repostsCount": 1,
# "empathyCount": 1,
# "commentsCount": 20,
# repostsCount:1,
# "postUrl": "https://www.linkedin.com/feed/update/urn:li:activity:6940542340960763905/",
# "postedAt": "1yr",
# "postedDate": "2022-06-09 05:57:23.126 +0000 UTC",
# "postedDateTimestamp": 1654754243126,
# "urn": "6940542340960763905",
# "author": {
# "firstName": "Angus",
# "lastName": "Yang",
# "username": "angus-yang-8885279a",
# "url": "https://www.linkedin.com/in/angus-yang-8885279a"
# },
# "company": {},
# "article": {
# "title": "2022 AWS STEM Summer Camp On The Cloud",
# "subtitle": "pages.awscloud.com • 2 min read",
# "link": "https://pages.awscloud.com/tw-2022-aws-stem-summer-camp-on-the-cloud_registration.html"
# }
# },


def save_posts_and_insights() -> None:
posts = request_posts_data()

last_post = query_last_post()
new_posts = (
[
post
for post in posts
if post["postedDateTimestamp"] > last_post["created_at"].timestamp()
]
if last_post
else posts
)

if not dump_posts_to_bigquery(
[
{
"id": post["urn"],
"created_at": post["postedDateTimestamp"],
"message": post["text"],
}
for post in new_posts
]
):
raise RuntimeError("Failed to dump posts to BigQuery")

if not dump_posts_insights_to_bigquery(
[
{
"post_id": post["urn"],
"query_time": datetime.now().timestamp(),
"period": "lifetime",
"favorite": post["likeCount"],
"reply": post["commentsCount"],
"retweet": post["repostsCount"],
"views": "0", # not support by RapidAPI
}
for post in posts
]
):
raise RuntimeError("Failed to dump posts insights to BigQuery")


def query_last_post() -> Optional[dict]:
client = bigquery.Client(project=os.getenv("BIGQUERY_PROJECT"))
sql = """
SELECT
created_at
FROM
`pycontw-225217.ods.ods_pycontw_linkedin_posts`
ORDER BY
created_at DESC
LIMIT 1
"""
result = client.query(sql)
data = list(result)
return data[0] if data else None


def request_posts_data() -> List[dict]:

# Define the request options
# url = 'https://linkedin-data-api.p.rapidapi.com/get-profile-posts' # for user
url = "https://linkedin-data-api.p.rapidapi.com/get-company-posts"
querystring = {"username": "pycontw"}
headers = {
"X-RapidAPI-Key": Variable.get("LINKEDIN_RAPIDAPI_KEY"),
"X-RapidAPI-Host": "linkedin-data-api.p.rapidapi.com",
}

response = requests.get(url, headers=headers, params=querystring, timeout=180)
if not response.ok:
raise RuntimeError(f"Failed to fetch posts data: {response.text}")

media_insight_list = []
media_res_list = response.json()["data"]
# format handling, the response may not include the required fields
for media_res in media_res_list:
media_insight = {}
media_insight["urn"] = media_res.get("urn", "0")
media_insight["postedDateTimestamp"] = (
media_res.get("postedDateTimestamp", "0") / 1000
)
media_insight["text"] = media_res.get("text", "No Content")
media_insight["likeCount"] = media_res.get("totalReactionCount", "0")
media_insight["commentsCount"] = media_res.get("commentsCount", "0")
media_insight["repostsCount"] = media_res.get("repostsCount", "0")
# logger.info(media_insight)
media_insight_list.append(media_insight)

return media_insight_list


def dump_posts_to_bigquery(posts: List[dict]) -> bool:
if not posts:
logger.info("No posts to dump!")
return True

client = bigquery.Client(project=os.getenv("BIGQUERY_PROJECT"))
job_config = bigquery.LoadJobConfig(
schema=[
bigquery.SchemaField("id", "STRING", mode="REQUIRED"),
bigquery.SchemaField("created_at", "TIMESTAMP", mode="REQUIRED"),
bigquery.SchemaField("message", "STRING", mode="REQUIRED"),
],
write_disposition="WRITE_APPEND",
)
try:
job = client.load_table_from_json(
posts,
"pycontw-225217.ods.ods_pycontw_linkedin_posts",
job_config=job_config,
)
job.result()
return True
except Exception as e:
logger.error(f"Failed to dump posts to BigQuery: {e}", exc_info=True)
return False


def dump_posts_insights_to_bigquery(posts: List[dict]) -> bool:
if not posts:
logger.info("No post insights to dump!")
return True

client = bigquery.Client(project=os.getenv("BIGQUERY_PROJECT"))
job_config = bigquery.LoadJobConfig(
schema=[
bigquery.SchemaField("post_id", "STRING", mode="REQUIRED"),
bigquery.SchemaField("query_time", "TIMESTAMP", mode="REQUIRED"),
bigquery.SchemaField("period", "STRING", mode="REQUIRED"),
bigquery.SchemaField("favorite", "INTEGER", mode="NULLABLE"),
bigquery.SchemaField("reply", "INTEGER", mode="NULLABLE"),
bigquery.SchemaField("retweet", "INTEGER", mode="NULLABLE"),
bigquery.SchemaField("views", "INTEGER", mode="NULLABLE"),
],
write_disposition="WRITE_APPEND",
)
try:
job = client.load_table_from_json(
posts,
"pycontw-225217.ods.ods_pycontw_linkedin_posts_insights",
job_config=job_config,
)
job.result()
return True
except Exception as e:
logger.error(f"Failed to dump posts insights to BigQuery: {e}", exc_info=True)
return False


def test_main():
create_table_if_needed()

# request_posts_data()

save_posts_and_insights()


if __name__ == "__main__":
test_main()
Loading