-
Notifications
You must be signed in to change notification settings - Fork 63
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adding FlexFec encoder implementation
- Loading branch information
Showing
5 changed files
with
424 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -27,6 +27,7 @@ Sean DuBois <[email protected]> | |
Steffen Vogel <[email protected]> | ||
treyhakanson <[email protected]> | ||
XLPolar <[email protected]> | ||
ypothoma <[email protected]> | ||
ziminghua <[email protected]> | ||
|
||
# List of contributors not appearing in Git history | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
// SPDX-FileCopyrightText: 2023 The Pion community <https://pion.ly> | ||
// SPDX-License-Identifier: MIT | ||
|
||
package flexfec | ||
|
||
import ( | ||
"github.com/pion/interceptor/pkg/flexfec/util" | ||
"github.com/pion/rtp" | ||
) | ||
|
||
// Maximum number of media packets that can be protected by a single FEC packet. | ||
// We are not supporting the possibility of having an FEC packet protect multiple | ||
// SSRC source packets for now. | ||
// https://datatracker.ietf.org/doc/html/rfc8627#section-4.2.2.1 | ||
const ( | ||
MaxMediaPackets uint32 = 110 | ||
MaxFecPackets uint32 = MaxMediaPackets | ||
) | ||
|
||
// ProtectionCoverage defines the map of RTP packets that individual Fec packets protect. | ||
type ProtectionCoverage struct { | ||
// Array of masks, each mask capable of covering up to maxMediaPkts = 110. | ||
// A mask is represented as a grouping of bytes where each individual bit | ||
// represents the coverage for the media packet at the corresponding index. | ||
packetMasks [MaxFecPackets]util.BitArray | ||
numFecPackets uint32 | ||
numMediaPackets uint32 | ||
mediaPackets []rtp.Packet | ||
} | ||
|
||
// NewCoverage returns a new ProtectionCoverage object. numFecPackets represents the number of | ||
// Fec packets that we will be generating to cover the list of mediaPackets. This allows us to know | ||
// how big the underlying map should be. | ||
func NewCoverage(mediaPackets []rtp.Packet, numFecPackets uint32) *ProtectionCoverage { | ||
numMediaPackets := uint32(len(mediaPackets)) | ||
|
||
// Basic sanity checks | ||
if numMediaPackets <= 0 || numMediaPackets > MaxMediaPackets { | ||
return nil | ||
} | ||
|
||
// We allocate the biggest array of bitmasks that respects the max constraints. | ||
var packetMasks [MaxFecPackets]util.BitArray | ||
for i := 0; i < int(MaxFecPackets); i++ { | ||
packetMasks[i] = util.NewBitArray(MaxMediaPackets) | ||
} | ||
|
||
// Generate FEC bit mask where numFecPackets FEC packets are covering numMediaPackets Media packets. | ||
// In the packetMasks array, each FEC packet is represented by a single BitArray, each bit in a given BitArray | ||
// corresponds to a specific Media packet. | ||
// Ex: Row I, Col J is set to 1 -> FEC packet I will protect media packet J. | ||
for fecPacketIndex := uint32(0); fecPacketIndex < numFecPackets; fecPacketIndex++ { | ||
// We use an interleaved method to determine coverage. Given N FEC packets, Media packet X will be | ||
// covered by FEC packet X % N. | ||
for mediaPacketIndex := uint32(0); mediaPacketIndex < numMediaPackets; mediaPacketIndex++ { | ||
coveringFecPktIndex := mediaPacketIndex % numFecPackets | ||
packetMasks[coveringFecPktIndex].SetBit(mediaPacketIndex, 1) | ||
} | ||
} | ||
|
||
return &ProtectionCoverage{ | ||
packetMasks: packetMasks, | ||
numFecPackets: numFecPackets, | ||
numMediaPackets: numMediaPackets, | ||
mediaPackets: mediaPackets, | ||
} | ||
} | ||
|
||
// ResetCoverage clears the underlying map so that we can reuse it for new batches of RTP packets. | ||
func (p *ProtectionCoverage) ResetCoverage() { | ||
for i := uint32(0); i < MaxFecPackets; i++ { | ||
for j := uint32(0); j < MaxMediaPackets; j++ { | ||
p.packetMasks[i].SetBit(j, 0) | ||
} | ||
} | ||
} | ||
|
||
// GetCoveredBy returns an iterator over RTP packets that are protected by the specified Fec packet index. | ||
func (p *ProtectionCoverage) GetCoveredBy(fecPacketIndex uint32) *util.MediaPacketIterator { | ||
coverage := make([]uint32, 0, p.numMediaPackets) | ||
for mediaPacketIndex := uint32(0); mediaPacketIndex < p.numMediaPackets; mediaPacketIndex++ { | ||
if p.packetMasks[fecPacketIndex].GetBit(mediaPacketIndex) == 1 { | ||
coverage = append(coverage, mediaPacketIndex) | ||
} | ||
} | ||
return util.NewMediaPacketIterator(p.mediaPackets, coverage) | ||
} | ||
|
||
// MarshalBitmasks returns the underlying bitmask that defines which media packets are protected by the | ||
// specified fecPacketIndex. | ||
func (p *ProtectionCoverage) MarshalBitmasks(fecPacketIndex uint32) []byte { | ||
return p.packetMasks[fecPacketIndex].Marshal() | ||
} | ||
|
||
// ExtractMask1 returns the first section of the bitmask as defined by the FEC header. | ||
// https://datatracker.ietf.org/doc/html/rfc8627#section-4.2.2.1 | ||
func (p *ProtectionCoverage) ExtractMask1(fecPacketIndex uint32) uint16 { | ||
return uint16(p.packetMasks[fecPacketIndex].GetBitValue(0, 14)) | ||
} | ||
|
||
// ExtractMask2 returns the second section of the bitmask as defined by the FEC header. | ||
// https://datatracker.ietf.org/doc/html/rfc8627#section-4.2.2.1 | ||
func (p *ProtectionCoverage) ExtractMask2(fecPacketIndex uint32) uint32 { | ||
return uint32(p.packetMasks[fecPacketIndex].GetBitValue(15, 45)) | ||
} | ||
|
||
// ExtractMask3 returns the third section of the bitmask as defined by the FEC header. | ||
// https://datatracker.ietf.org/doc/html/rfc8627#section-4.2.2.1 | ||
func (p *ProtectionCoverage) ExtractMask3(fecPacketIndex uint32) uint64 { | ||
return p.packetMasks[fecPacketIndex].GetBitValue(46, 109) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,184 @@ | ||
// SPDX-FileCopyrightText: 2023 The Pion community <https://pion.ly> | ||
// SPDX-License-Identifier: MIT | ||
|
||
// Package flexfec implements FlexFEC to recover missing RTP packets due to packet loss. | ||
// https://datatracker.ietf.org/doc/html/rfc8627 | ||
package flexfec | ||
|
||
import ( | ||
"encoding/binary" | ||
|
||
"github.com/pion/interceptor/pkg/flexfec/util" | ||
"github.com/pion/rtp" | ||
) | ||
|
||
const ( | ||
// BaseRTPHeaderSize represents the minium RTP packet header size in bytes. | ||
BaseRTPHeaderSize = 12 | ||
// BaseFecHeaderSize represents the minium FEC payload's header size including the | ||
// required first mask. | ||
BaseFecHeaderSize = 12 | ||
) | ||
|
||
// FlexEncoder implements the Fec encoding mechanism for the "Flex" variant of FlexFec. | ||
type FlexEncoder struct { | ||
baseSN uint16 | ||
payloadType uint8 | ||
ssrc uint32 | ||
coverage *ProtectionCoverage | ||
} | ||
|
||
// NewFlexEncoder returns a new FlexFecEncer. | ||
func NewFlexEncoder(baseSN uint16, payloadType uint8, ssrc uint32) *FlexEncoder { | ||
return &FlexEncoder{ | ||
baseSN: baseSN, | ||
payloadType: payloadType, | ||
ssrc: ssrc, | ||
coverage: nil, | ||
} | ||
} | ||
|
||
// EncodeFec returns a list of generated RTP packets with FEC payloads that protect the specified mediaPackets. | ||
// This method does not account for missing RTP packets in the mediaPackets array nor does it account for | ||
// them being passed out of order. | ||
func (flex *FlexEncoder) EncodeFec(mediaPackets []rtp.Packet, numFecPackets uint32) []rtp.Packet { | ||
// Start by defining which FEC packets cover which media packets | ||
if flex.coverage == nil { | ||
flex.coverage = NewCoverage(mediaPackets, numFecPackets) | ||
} else { | ||
flex.coverage.ResetCoverage() | ||
} | ||
|
||
if flex.coverage == nil { | ||
return nil | ||
} | ||
|
||
// Generate FEC payloads | ||
fecPackets := make([]rtp.Packet, numFecPackets) | ||
for fecPacketIndex := uint32(0); fecPacketIndex < numFecPackets; fecPacketIndex++ { | ||
fecPackets[fecPacketIndex] = flex.encodeFlexFecPacket(fecPacketIndex) | ||
} | ||
|
||
return fecPackets | ||
} | ||
|
||
func (flex *FlexEncoder) encodeFlexFecPacket(fecPacketIndex uint32) rtp.Packet { | ||
mediaPacketsIt := flex.coverage.GetCoveredBy(fecPacketIndex) | ||
flexFecHeader := flex.encodeFlexFecHeader( | ||
mediaPacketsIt, | ||
flex.coverage.ExtractMask1(fecPacketIndex), | ||
flex.coverage.ExtractMask2(fecPacketIndex), | ||
flex.coverage.ExtractMask3(fecPacketIndex), | ||
) | ||
flexFecRepairPayload := flex.encodeFlexFecRepairPayload(mediaPacketsIt.Reset()) | ||
|
||
return rtp.Packet{ | ||
Header: rtp.Header{ | ||
Version: 2, | ||
Padding: false, | ||
Extension: false, | ||
Marker: false, | ||
PayloadType: flex.payloadType, | ||
SequenceNumber: flex.baseSN, | ||
Timestamp: 54243243, | ||
SSRC: flex.ssrc, | ||
CSRC: []uint32{}, | ||
}, | ||
Payload: append(flexFecHeader, flexFecRepairPayload...), | ||
} | ||
} | ||
|
||
func (flex *FlexEncoder) encodeFlexFecHeader(mediaPackets *util.MediaPacketIterator, mask1 uint16, optionalMask2 uint32, optionalMask3 uint64) []byte { | ||
/* | ||
0 1 2 3 | ||
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 | ||
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ||
|0|0|P|X| CC |M| PT recovery | length recovery | | ||
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ||
| TS recovery | | ||
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ||
| SN base_i |k| Mask [0-14] | | ||
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ||
|k| Mask [15-45] (optional) | | ||
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ||
| Mask [46-109] (optional) | | ||
| | | ||
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ||
| ... next SN base and Mask for CSRC_i in CSRC list ... | | ||
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ||
: Repair "Payload" follows FEC Header : | ||
: : | ||
*/ | ||
|
||
// Get header size - This depends on the size of the bitmask. | ||
headerSize := BaseFecHeaderSize | ||
if optionalMask2 > 0 { | ||
headerSize += 4 | ||
} | ||
if optionalMask3 > 0 { | ||
headerSize += 8 | ||
} | ||
|
||
// Allocate a the FlexFec header | ||
flexFecHeader := make([]byte, headerSize) | ||
|
||
// XOR the relevant fields for the header | ||
// TO DO - CHECK TO SEE IF THE MARSHALTO() call works with this. | ||
tmpMediaPacketBuf := make([]byte, headerSize) | ||
for mediaPackets.HasNext() { | ||
mediaPacket := mediaPackets.Next() | ||
n, err := mediaPacket.MarshalTo(tmpMediaPacketBuf) | ||
|
||
if n == 0 || err != nil { | ||
return nil | ||
} | ||
|
||
// XOR the first 2 bytes of the header: V, P, X, CC, M, PT fields | ||
flexFecHeader[0] ^= tmpMediaPacketBuf[0] | ||
flexFecHeader[1] ^= tmpMediaPacketBuf[1] | ||
|
||
// XOR the length recovery field | ||
lengthRecoveryVal := uint16(mediaPacket.MarshalSize() - BaseRTPHeaderSize) | ||
flexFecHeader[2] ^= uint8(lengthRecoveryVal >> 8) | ||
flexFecHeader[3] ^= uint8(lengthRecoveryVal) | ||
|
||
// XOR the 5th to 8th bytes of the header: the timestamp field | ||
flexFecHeader[4] ^= flexFecHeader[4] | ||
flexFecHeader[5] ^= flexFecHeader[5] | ||
flexFecHeader[6] ^= flexFecHeader[6] | ||
flexFecHeader[7] ^= flexFecHeader[7] | ||
} | ||
|
||
// Write the bitmasks to the header | ||
binary.BigEndian.PutUint16(flexFecHeader[10:12], mask1) | ||
|
||
if optionalMask2 > 0 { | ||
binary.BigEndian.PutUint32(flexFecHeader[12:16], optionalMask2) | ||
flexFecHeader[10] |= 0b10000000 | ||
} | ||
if optionalMask3 > 0 { | ||
binary.BigEndian.PutUint64(flexFecHeader[16:24], optionalMask3) | ||
flexFecHeader[12] |= 0b10000000 | ||
} | ||
return flexFecHeader | ||
} | ||
|
||
func (flex *FlexEncoder) encodeFlexFecRepairPayload(mediaPackets *util.MediaPacketIterator) []byte { | ||
flexFecPayload := make([]byte, len(mediaPackets.First().Payload)) | ||
|
||
for mediaPackets.HasNext() { | ||
mediaPacketPayload := mediaPackets.Next().Payload | ||
|
||
if len(flexFecPayload) < len(mediaPacketPayload) { | ||
// Expected FEC packet payload is bigger that what we can currently store, | ||
// we need to resize. | ||
flexFecPayloadTmp := make([]byte, len(mediaPacketPayload)) | ||
copy(flexFecPayloadTmp, flexFecPayload) | ||
flexFecPayload = flexFecPayloadTmp | ||
} | ||
for byteIndex := 0; byteIndex < len(mediaPacketPayload); byteIndex++ { | ||
flexFecPayload[byteIndex] ^= mediaPacketPayload[byteIndex] | ||
} | ||
} | ||
return flexFecPayload | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
// SPDX-FileCopyrightText: 2023 The Pion community <https://pion.ly> | ||
// SPDX-License-Identifier: MIT | ||
|
||
// Package util implements utilities to better support Fec decoding / encoding. | ||
package util | ||
|
||
// BitArray provides support for bitmask manipulations. | ||
type BitArray struct { | ||
bytes []byte | ||
} | ||
|
||
// NewBitArray returns a new BitArray. It takes sizeBits as parameter which represents | ||
// the size of the underlying bitmask. | ||
func NewBitArray(sizeBits uint32) BitArray { | ||
var sizeBytes uint32 | ||
if sizeBits%8 == 0 { | ||
sizeBytes = sizeBits / 8 | ||
} else { | ||
sizeBytes = sizeBits/8 + 1 | ||
} | ||
|
||
return BitArray{ | ||
bytes: make([]byte, sizeBytes), | ||
} | ||
} | ||
|
||
// SetBit sets a bit to the specified bit value on the bitmask. | ||
func (b *BitArray) SetBit(bitIndex uint32, bitValue uint32) { | ||
byteIndex := bitIndex / 8 | ||
bitOffset := uint(bitIndex % 8) | ||
|
||
// Set the specific bit to 1 using bitwise OR | ||
if bitValue == 1 { | ||
b.bytes[byteIndex] |= 1 << bitOffset | ||
} else { | ||
b.bytes[byteIndex] |= 0 << bitOffset | ||
} | ||
} | ||
|
||
// GetBit returns the bit value at a specified index of the bitmask. | ||
func (b *BitArray) GetBit(bitIndex uint32) uint8 { | ||
return b.bytes[bitIndex/8] | ||
} | ||
|
||
// Marshal returns the underlying bitmask. | ||
func (b *BitArray) Marshal() []byte { | ||
return b.bytes | ||
} | ||
|
||
// GetBitValue returns a subsection of the bitmask. | ||
func (b *BitArray) GetBitValue(i int, j int) uint64 { | ||
if i < 0 || i >= len(b.bytes)*8 || j < 0 || j >= len(b.bytes)*8 || i > j { | ||
return 0 | ||
} | ||
|
||
startByte := i / 8 | ||
startBit := i % 8 | ||
endByte := j / 8 | ||
|
||
// Create a slice containing the bytes to extract | ||
subArray := b.bytes[startByte : endByte+1] | ||
|
||
// Initialize the result value | ||
var result uint64 | ||
|
||
// Loop through the bytes and concatenate the bits | ||
for idx, b := range subArray { | ||
if idx == 0 { | ||
b <<= uint(startBit) | ||
} | ||
result |= uint64(b) | ||
} | ||
|
||
// Mask the bits that are not part of the desired range | ||
result &= (1<<uint(j-i+1) - 1) | ||
|
||
return result | ||
} |
Oops, something went wrong.