Skip to content

Commit

Permalink
Fix doctests
Browse files Browse the repository at this point in the history
  • Loading branch information
lgoettgens committed May 2, 2024
1 parent 85c84e0 commit 5dac6b1
Show file tree
Hide file tree
Showing 19 changed files with 64 additions and 66 deletions.
2 changes: 1 addition & 1 deletion docs/src/CommutativeAlgebra/rings.md
Original file line number Diff line number Diff line change
Expand Up @@ -405,7 +405,7 @@ julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])
julia> B = MPolyBuildCtx(R)
Builder for an element of Multivariate polynomial ring in 2 variables over QQ
Builder for an element of multivariate polynomial ring
julia> for i = 1:5 push_term!(B, QQ(i), [i, i-1]) end
Expand Down
8 changes: 4 additions & 4 deletions docs/src/NumberTheory/galois.md
Original file line number Diff line number Diff line change
Expand Up @@ -96,10 +96,10 @@ julia> F, a = function_field(x^6 + 108*t^2 + 108*t + 27);
julia> subfields(F)
4-element Vector{Any}:
(Function Field over Rational field with defining polynomial a^3 + 54*t + 27, (1//12*_a^4 + (3//2*t + 3//4)*_a)//(t + 1//2))
(Function Field over Rational field with defining polynomial a^2 + 108*t^2 + 108*t + 27, _a^3)
(Function Field over Rational field with defining polynomial a^3 - 108*t^2 - 108*t - 27, -_a^2)
(Function Field over Rational field with defining polynomial a^3 - 54*t - 27, (-1//12*_a^4 + (3//2*t + 3//4)*_a)//(t + 1//2))
(Function Field over QQ with defining polynomial a^3 + 54*t + 27, (1//12*_a^4 + (3//2*t + 3//4)*_a)//(t + 1//2))
(Function Field over QQ with defining polynomial a^2 + 108*t^2 + 108*t + 27, _a^3)
(Function Field over QQ with defining polynomial a^3 - 108*t^2 - 108*t - 27, -_a^2)
(Function Field over QQ with defining polynomial a^3 - 54*t - 27, (-1//12*_a^4 + (3//2*t + 3//4)*_a)//(t + 1//2))
julia> galois_group(F)
(Permutation group of degree 6 and order 6, Galois context for s^6 + 108*t^2 + 540*t + 675)
Expand Down
2 changes: 1 addition & 1 deletion experimental/ModStd/src/ModStdQt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -591,7 +591,7 @@ julia> f = factor_absolute((X[1]^2+a[1]*X[2]^2)*(X[1]+2*X[2]+3*a[1]+4*a[2]))
julia> parent(f[3][1])
Multivariate polynomial ring in 2 variables X[1], X[2]
over fraction field of multivariate polynomial ring
over fraction field of Qa
julia> parent(f[2][1])
Multivariate polynomial ring in 2 variables X[1], X[2]
Expand Down
2 changes: 1 addition & 1 deletion experimental/Schemes/CoveredProjectiveSchemes.jl
Original file line number Diff line number Diff line change
Expand Up @@ -311,7 +311,7 @@ julia> R, (x,y,z) = QQ["x", "y", "z"];
julia> Oscar.empty_covered_projective_scheme(R)
Relative projective scheme
over empty covered scheme over multivariate polynomial ring
over empty covered scheme over R
covered with 0 projective patches
```
"""
Expand Down
6 changes: 3 additions & 3 deletions experimental/Schemes/duValSing.jl
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ Ideal generated by
x^2 + y^3 + z^4
julia> Rq, _ = quo(R,I)
(Quotient of multivariate polynomial ring by ideal (w, x^2 + y^3 + z^4), Map: multivariate polynomial ring -> Rq)
(Quotient of multivariate polynomial ring by ideal (w, x^2 + y^3 + z^4), Map: R -> Rq)
julia> X = spec(Rq)
Spectrum
Expand Down Expand Up @@ -78,7 +78,7 @@ Ideal generated by
x^2 + y^3 + z^4
julia> Rq, _ = quo(R,I)
(Quotient of multivariate polynomial ring by ideal (w, x^2 + y^3 + z^4), Map: multivariate polynomial ring -> Rq)
(Quotient of multivariate polynomial ring by ideal (w, x^2 + y^3 + z^4), Map: R -> Rq)
julia> J = ideal(R,[x,y,z,w])
Ideal generated by
Expand Down Expand Up @@ -158,7 +158,7 @@ Ideal generated by
x^2 + y^3 + z^4
julia> Rq, _ = quo(R,I)
(Quotient of multivariate polynomial ring by ideal (w, x^2 + y^3 + z^4), Map: multivariate polynomial ring -> Rq)
(Quotient of multivariate polynomial ring by ideal (w, x^2 + y^3 + z^4), Map: R -> Rq)
julia> J = ideal(R,[x,y,z,w])
Ideal generated by
Expand Down
2 changes: 1 addition & 1 deletion src/Combinatorics/SimplicialComplexes.jl
Original file line number Diff line number Diff line change
Expand Up @@ -370,7 +370,7 @@ Return the Stanley-Reisner ring of the abstract simplicial complex `K`, as a quo
julia> R, _ = ZZ["a","b","c","d","e","f"];
julia> stanley_reisner_ring(R, real_projective_plane())
(Quotient of multivariate polynomial ring by ideal (a*b*c, a*b*d, a*e*f, b*e*f, a*c*f, a*d*e, c*d*e, c*d*f, b*c*e, b*d*f), Map: multivariate polynomial ring -> quotient of multivariate polynomial ring)
(Quotient of multivariate polynomial ring by ideal (a*b*c, a*b*d, a*e*f, b*e*f, a*c*f, a*d*e, c*d*e, c*d*f, b*c*e, b*d*f), Map: R -> quotient of multivariate polynomial ring)
```
"""
stanley_reisner_ring(R::MPolyRing, K::SimplicialComplex) = quo(R, stanley_reisner_ideal(R, K))
Expand Down
2 changes: 1 addition & 1 deletion src/Modules/ModuleTypes.jl
Original file line number Diff line number Diff line change
Expand Up @@ -116,7 +116,7 @@ julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])
julia> F = free_module(R, 3)
Free module of rank 3 over Multivariate polynomial ring in 2 variables over QQ
Free module of rank 3 over R
julia> f = F(sparse_row(R, [(1,x),(3,y)]))
x*e[1] + y*e[3]
Expand Down
4 changes: 2 additions & 2 deletions src/Modules/UngradedModules/FreeMod.jl
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ The string `name` specifies how the basis vectors are printed.
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> FR = free_module(R, 2)
Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 2 over R
julia> x*FR[1]
x*e[1]
Expand All @@ -49,7 +49,7 @@ julia> U = complement_of_prime_ideal(P);
julia> RL, _ = localization(R, U);
julia> FRL = free_module(RL, 2, "f")
Free module of rank 2 over Localization of multivariate polynomial ring in 3 variables over QQ at complement of prime ideal (x, y, z)
Free module of rank 2 over Localization of R at complement of prime ideal (x, y, z)
julia> RL(x)*FRL[1]
x*f[1]
Expand Down
2 changes: 1 addition & 1 deletion src/Modules/UngradedModules/FreeModElem.jl
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,7 @@ julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])
julia> F = FreeMod(R,3)
Free module of rank 3 over Multivariate polynomial ring in 2 variables over QQ
Free module of rank 3 over R
julia> f = x*gen(F,1)+y*gen(F,3)
x*e[1] + y*e[3]
Expand Down
36 changes: 18 additions & 18 deletions src/Modules/UngradedModules/FreeModuleHom.jl
Original file line number Diff line number Diff line change
Expand Up @@ -42,10 +42,10 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])
julia> F = free_module(R, 3)
Free module of rank 3 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 3 over R
julia> G = free_module(R, 2)
Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 2 over R
julia> V = [y*G[1], x*G[1]+y*G[2], z*G[2]];
Expand Down Expand Up @@ -101,10 +101,10 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])
julia> F = free_module(R, 3)
Free module of rank 3 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 3 over R
julia> G = free_module(R, 2)
Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 2 over R
julia> V = [y*G[1], x*G[1]+y*G[2], z*G[2]]
3-element Vector{FreeModElem{QQMPolyRingElem}}:
Expand All @@ -116,10 +116,10 @@ julia> a = hom(F, G, V)
Map with following data
Domain:
=======
Free module of rank 3 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 3 over R
Codomain:
=========
Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 2 over R
julia> a(F[2])
x*e[1] + y*e[2]
Expand All @@ -133,10 +133,10 @@ julia> b = hom(F, G, B)
Map with following data
Domain:
=======
Free module of rank 3 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 3 over R
Codomain:
=========
Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 2 over R
julia> a == b
true
Expand Down Expand Up @@ -325,10 +325,10 @@ that converts elements from $S$ into morphisms $F \to G$.
julia> R, _ = polynomial_ring(QQ, ["x", "y", "z"]);
julia> F1 = free_module(R, 3)
Free module of rank 3 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 3 over R
julia> F2 = free_module(R, 2)
Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 2 over R
julia> V, f = hom(F1, F2)
(hom of (F1, F2), Map: V -> set of all homomorphisms from F1 to F2)
Expand All @@ -337,10 +337,10 @@ julia> f(V[1])
Map with following data
Domain:
=======
Free module of rank 3 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 3 over R
Codomain:
=========
Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 2 over R
```
Expand Down Expand Up @@ -414,10 +414,10 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])
julia> F = free_module(R, 3)
Free module of rank 3 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 3 over R
julia> G = free_module(R, 2)
Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 2 over R
julia> V = [y*G[1], x*G[1]+y*G[2], z*G[2]];
Expand All @@ -434,7 +434,7 @@ Submodule with 1 generator
represented as subquotient with no relations.
Codomain:
=========
Free module of rank 3 over Multivariate polynomial ring in 3 variables over QQ)
Free module of rank 3 over R)
```
```jldoctest
Expand Down Expand Up @@ -546,10 +546,10 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])
julia> F = free_module(R, 3)
Free module of rank 3 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 3 over R
julia> G = free_module(R, 2)
Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 2 over R
julia> V = [y*G[1], x*G[1]+y*G[2], z*G[2]];
Expand All @@ -570,7 +570,7 @@ Submodule with 3 generators
represented as subquotient with no relations.
Codomain:
=========
Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ)
Free module of rank 2 over R)
```
```jldoctest
Expand Down
2 changes: 1 addition & 1 deletion src/Modules/UngradedModules/FreeResolutions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -284,7 +284,7 @@ julia> is_complete(fr)
false
julia> fr[4]
Free module of rank 0 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 0 over R
julia> fr
Free resolution of M
Expand Down
4 changes: 2 additions & 2 deletions src/Modules/UngradedModules/Presentation.jl
Original file line number Diff line number Diff line change
Expand Up @@ -432,7 +432,7 @@ If `task = :only_morphism`, return only an isomorphism.
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> F = free_module(R, 2)
Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 2 over R
julia> present_as_cokernel(F)
Submodule with 2 generators
Expand All @@ -444,7 +444,7 @@ julia> present_as_cokernel(F, :only_morphism)
Map with following data
Domain:
=======
Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 2 over R
Codomain:
=========
Submodule with 2 generators
Expand Down
10 changes: 5 additions & 5 deletions src/Modules/UngradedModules/SubQuoHom.jl
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,7 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])
julia> F = free_module(R, 1)
Free module of rank 1 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 1 over R
julia> A = R[x; y]
[x]
Expand Down Expand Up @@ -187,7 +187,7 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])
julia> F = free_module(R, 1)
Free module of rank 1 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 1 over R
julia> A = R[x; y];
Expand Down Expand Up @@ -383,7 +383,7 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])
julia> F = free_module(R, 1)
Free module of rank 1 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 1 over R
julia> A = R[x; y]
[x]
Expand Down Expand Up @@ -602,7 +602,7 @@ Submodule with 3 generators
represented as subquotient with no relations.
Codomain:
=========
Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 2 over R
```
```jldoctest
Expand Down Expand Up @@ -780,7 +780,7 @@ Submodule with 1 generator
represented as subquotient with no relations.
Codomain:
=========
Free module of rank 3 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 3 over R
```
```jldoctest
Expand Down
20 changes: 10 additions & 10 deletions src/Modules/UngradedModules/SubquoModule.jl
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ julia> R, (x,y) = polynomial_ring(QQ, ["x", "y"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])
julia> F = FreeMod(R,2)
Free module of rank 2 over Multivariate polynomial ring in 2 variables over QQ
Free module of rank 2 over R
julia> O = [x*F[1]+F[2],y*F[2]]
2-element Vector{FreeModElem{QQMPolyRingElem}}:
Expand Down Expand Up @@ -187,7 +187,7 @@ free module homomorphisms with codomain `F` represented by `A` and `B`.
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> FR = free_module(R, 1)
Free module of rank 1 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 1 over R
julia> AR = R[x; y]
[x]
Expand All @@ -214,7 +214,7 @@ julia> U = complement_of_prime_ideal(P);
julia> RL, _ = localization(R, U);
julia> FRL = free_module(RL, 1)
Free module of rank 1 over Localization of multivariate polynomial ring in 3 variables over QQ at complement of prime ideal (x, y, z)
Free module of rank 1 over Localization of R at complement of prime ideal (x, y, z)
julia> ARL = RL[x; y]
[x]
Expand Down Expand Up @@ -571,7 +571,7 @@ Return the cokernel of `A` as an object of type `SubquoModule` with ambient free
julia> R, (x,y,z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> F = free_module(R, 2)
Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 2 over R
julia> A = R[x y; 2*x^2 3*y^2]
[ x y]
Expand Down Expand Up @@ -658,7 +658,7 @@ Return the image of `A` as an object of type `SubquoModule` with ambient free mo
julia> R, (x,y,z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> F = free_module(R, 2)
Free module of rank 2 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 2 over R
julia> A = R[x y; 2*x^2 3*y^2]
[ x y]
Expand Down Expand Up @@ -838,7 +838,7 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])
julia> F = free_module(R, 1)
Free module of rank 1 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 1 over R
julia> AM = R[x;]
[x]
Expand Down Expand Up @@ -966,7 +966,7 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])
julia> F = free_module(R, 1)
Free module of rank 1 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 1 over R
julia> AM = R[x;]
[x]
Expand Down Expand Up @@ -1165,7 +1165,7 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])
julia> F = free_module(R, 1)
Free module of rank 1 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 1 over R
julia> AM = R[x;]
[x]
Expand Down Expand Up @@ -1347,7 +1347,7 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])
julia> F = free_module(R, 1)
Free module of rank 1 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 1 over R
julia> AM = R[x;]
[x]
Expand Down Expand Up @@ -1450,7 +1450,7 @@ julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])
julia> F = free_module(R, 1)
Free module of rank 1 over Multivariate polynomial ring in 3 variables over QQ
Free module of rank 1 over R
julia> AM = R[x;]
[x]
Expand Down
Loading

0 comments on commit 5dac6b1

Please sign in to comment.