Skip to content

Commit

Permalink
Update convert_datasets.md
Browse files Browse the repository at this point in the history
  • Loading branch information
Wei-Chen-hub authored Aug 22, 2023
1 parent 329234e commit 269d06a
Showing 1 changed file with 78 additions and 7 deletions.
85 changes: 78 additions & 7 deletions docs/convert_datasets.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,82 @@
## Convert Datasets to HumanData
This page describes how to process various datasets to current HumanData.
# Convert Datasets to HumanData and Use in Training
**This page describes how to use the various HumanData flies** as well as (only if you are interested) how to process various datasets to current HumanData.

### Overview - Current Supported Datasets
## Introduction & Settings
1. How can I read image from HumanData image path?

In HumanData file, image path denotes the relative path within the dataset. In this example:

```
your_path_to_dataset = '/mnt/d'
dataset_name = 'egobody'
image_path = HumanData['image_path'][100] # for example
image_real_path = os.path.join(your_path_to_dataset, dataset_name, image_path)
image = cv2.imread(image_real_path)
```
2. For using HumanData only (not including converting), you just need to do several changes to the file structues on the originally downloaded datasets. The converting process and file included will be marked **"Converter"**.
3. Ideal size of HumanData file is less than 2GB, given loading it uses 10x memory, therefore some huge datasets are split in several files.
4. (For convert only) Install "convertors" branch and set the working directory as below.

```
git clone -b convertors https://github.com/open-mmlab/mmhuman3d.git
cd /Your_path_to_mmhuman3d/mmhuman3d # e.g. /mnt/d/zoehuman/mmhuman3d
```
5. (For convert only) The usage of convert_datasets.py
```
python tools/convert_datasets.py \
--datasets moyo \
--root_path /mnt/d/datasets \
--output_path /mnt/d/datasets/moyo/output \
--modes train
# dataset folder should be os.path.join(root_path, datasets)
# output path is the folder which sotres output HumanData
```

## Overview - Current Supported Datasets
- MSCOCO (Neural Annot)

### Subsection 1 - Neural Annot Datasets
#### MSCOCO
**STEP 1:**
Download from Nerual Annot Homepage
## Subsection 1 - Neural Annot Datasets
Overall: Download from [Nerual Annot Homepage](https://github.com/mks0601/NeuralAnnot_RELEASE/blob/main/README.md)
<details>
<summary>MSCOCO</summary>

**Step 1 - Only Step for using HumanData**

Download and rearrange the file structure as below:

```
D:\datasets\mscoco\
├── annotations\
│ ├──MSCOCO_train_SMPLX.json
│ ├──MSCOCO_train_SMPLX_all_NeuralAnnot.json
│ ├──coco_wholebody_train_v1.0.json
│ ├──coco_wholebody_train_v1.0_reformat.json # Optional
│ └──coco_wholebody_val_v1.0.json
├── images\
│ │
│ ├── train2017\
│ │
│ └── val2017\
```
**Step 2 (Converter) - Preprocess coco annotations**

This process converts the coco annotation json to faciliate sorting ids.
```
python tools/preprocess/neural_annot.py --dataset_path /YOUR_PATH/mscoco
```

**Step 3 (Converter) - Convert Dataset**
```
python tools/convert_datasets.py \
--datasets mscoco \
--root_path /mnt/d/datasets \
--output_path /mnt/d/datasets/mscoco/output \
--modes train
```
</details>

<details>
<summary>MPII</summary>
</details>

0 comments on commit 269d06a

Please sign in to comment.