-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 316a036
Showing
9 changed files
with
702 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2020 Nicola De Cao | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
# The Power Spherical distribution | ||
|
||
## Overview | ||
This library contains a Pytorch implementation of the Power Spherical distribution, as presented in [[1]](#citation)(http://arxiv.org/abs/2006.TBA). | ||
|
||
## Dependencies | ||
|
||
* **python>=3.6** | ||
* **pytorch>=1.5**: https://pytorch.org | ||
|
||
*Notice that older version could work but they were not tested.* | ||
|
||
Optional dependency for [examples](https://github.com/nicola-decao/power_spherical/blob/master/example.ipynb) needed for plotting and numerical checks (again older version could work but they were not tested): | ||
* **numpy>=1.18.1**: https://numpy.org | ||
* **matplotlib>=3.1.1**: https://matplotlib.org | ||
* **quadpy>=0.14.11**: https://pypi.org/project/quadpy | ||
|
||
## Installation | ||
|
||
To install, run | ||
|
||
```bash | ||
$ python setup.py install | ||
``` | ||
|
||
## Structure | ||
* [distributions](https://github.com/nicola-decao/power_spherical/blob/master/power_spherical/distributions.py): Pytorch implementation of the Power Spherical and hyperspherical Uniform distributions. Both inherit from `torch.distributions.Distribution`. | ||
* [examples](https://github.com/nicola-decao/power_spherical/blob/master/example.ipynb): Example code for using the library within a PyTorch project. | ||
|
||
## Usage | ||
Please have a look into the [examples](https://github.com/nicola-decao/power_spherical/blob/master/example.ipynb). We adapted our implementation to follow the structure of the [Pytorch probability distributions](https://pytorch.org/docs/stable/distributions.html). | ||
|
||
Here a minimal example that demonstrate differentiable sampling: | ||
```python | ||
>>> from power_spherical import PowerSpherical | ||
>>> p = PowerSpherical( | ||
loc=torch.tensor([0., 1.], requires_grad=True), | ||
scale=torch.tensor(4., requires_grad=True), | ||
) | ||
>>> p.rsample() | ||
|
||
tensor([-0.1786, 0.9839], grad_fn=<SubBackward0>) | ||
``` | ||
and computing KL divergence with the uniform distribution: | ||
```python | ||
>>> from power_spherical import HypersphericalUniform | ||
>>> q = HypersphericalUniform(dim=2) | ||
>>> torch.distributions.kl_divergence(p, q) | ||
|
||
tensor(1.2486, grad_fn=<AddBackward0>) | ||
``` | ||
|
||
Examples of 2D and 3D plots are show in [examples](https://github.com/nicola-decao/power_spherical/blob/master/example.ipynb) and will generate something similar to these figures below. | ||
<p align="center"> | ||
<img class="paper_logo" src="https://i.imgur.com/4iITHS5.png" width=40%> | ||
<img class="paper_logo" src="https://i.imgur.com/zXZWr9H.png" width=40%> | ||
</p> | ||
|
||
Please cite [[1](#citation)] in your work when using this library in your experiments. | ||
|
||
## Feedback | ||
For questions and comments, feel free to contact [Nicola De Cao](mailto:[email protected]). | ||
|
||
## License | ||
MIT | ||
|
||
## Citation | ||
``` | ||
[1] De Cao, N., Aziz, W. (2020). | ||
The Power Spherical distrbution. | ||
arXiv preprint arXiv:2006.TBA. | ||
``` | ||
|
||
BibTeX format: | ||
``` | ||
@article{decao2020power, | ||
title={The Power Spherical distrbution}, | ||
author={ | ||
De Cao, Nicola and | ||
Aziz, Wilker}, | ||
journal={arXiv preprint arXiv:2006.TBA}, | ||
year={2020} | ||
} | ||
``` |
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from .distributions import HypersphericalUniform | ||
from .distributions import PowerSpherical | ||
from .distributions import MarginalTDistribution |
Binary file not shown.
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,214 @@ | ||
import math | ||
import torch | ||
from torch.distributions.kl import register_kl | ||
|
||
|
||
_EPS = 1e-7 | ||
|
||
|
||
class _TTransform(torch.distributions.Transform): | ||
def _call(self, x): | ||
t = x[..., 0].unsqueeze(-1) | ||
v = x[..., 1:] | ||
return torch.cat((t, v * torch.sqrt(torch.clamp(1 - t ** 2, _EPS))), -1) | ||
|
||
def _inverse(self, y): | ||
t = y[..., 0].unsqueeze(-1) | ||
v = y[..., 1:] | ||
return torch.cat((t, v / torch.sqrt(torch.clamp(1 - t ** 2, _EPS))), -1) | ||
|
||
def log_abs_det_jacobian(self, x, y): | ||
t = x[..., 0] | ||
return ((x.shape[-1] - 3) / 2) * torch.log(torch.clamp(1 - t ** 2, _EPS)) | ||
|
||
|
||
class _HouseholderRotationTransform(torch.distributions.Transform): | ||
def __init__(self, loc): | ||
super().__init__() | ||
self.loc = loc | ||
self.e1 = torch.zeros_like(self.loc) | ||
self.e1[..., 0] = 1 | ||
|
||
def _call(self, x): | ||
u = self.e1 - self.loc | ||
u = u / (u.norm(dim=-1, keepdim=True) + _EPS) | ||
return x - 2 * (x * u).sum(-1, keepdim=True) * u | ||
|
||
def _inverse(self, y): | ||
u = self.e1 - self.loc | ||
u = u / (u.norm(dim=-1, keepdim=True) + _EPS) | ||
return y - 2 * (y * u).sum(-1, keepdim=True) * u | ||
|
||
def log_abs_det_jacobian(self, x, y): | ||
return 0 | ||
|
||
|
||
class HypersphericalUniform(torch.distributions.Distribution): | ||
|
||
arg_constraints = { | ||
"dim": torch.distributions.constraints.positive_integer, | ||
} | ||
|
||
def __init__(self, dim, device="cpu", dtype=torch.float32, validate_args=None): | ||
super().__init__(validate_args=validate_args) | ||
self.dim, self.device, self.dtype = dim, device, dtype | ||
|
||
def rsample(self, sample_shape=()): | ||
v = torch.empty( | ||
sample_shape + (self.dim,), device=self.device, dtype=self.dtype | ||
).normal_() | ||
return v / (v.norm(dim=-1, keepdim=True) + _EPS) | ||
|
||
def log_prob(self, value): | ||
return torch.full_like( | ||
value[..., 0], | ||
math.lgamma(self.dim / 2) | ||
- (math.log(2) + (self.dim / 2) * math.log(math.pi)), | ||
device=self.device, | ||
dtype=self.dtype, | ||
) | ||
|
||
def entropy(self): | ||
return -self.log_prob(torch.empty(1)) | ||
|
||
def __repr__(self): | ||
return "HypersphericalUniform(dim={}, device={}, dtype={})".format( | ||
self.dim, self.device, self.dtype | ||
) | ||
|
||
|
||
class MarginalTDistribution(torch.distributions.TransformedDistribution): | ||
|
||
arg_constraints = { | ||
"dim": torch.distributions.constraints.positive_integer, | ||
"scale": torch.distributions.constraints.positive, | ||
} | ||
|
||
has_rsample = True | ||
|
||
def __init__(self, dim, scale, validate_args=None): | ||
super().__init__( | ||
torch.distributions.Beta( | ||
(dim - 1) / 2 + scale, (dim - 1) / 2, validate_args=validate_args | ||
), | ||
transforms=torch.distributions.AffineTransform(loc=-1, scale=2), | ||
) | ||
self.dim, self.scale = dim, scale | ||
|
||
def entropy(self): | ||
return self.base_dist.entropy() + math.log(2) | ||
|
||
@property | ||
def mean(self): | ||
return 2 * self.base_dist.mean - 1 | ||
|
||
@property | ||
def stddev(self): | ||
return self.variance.sqrt() | ||
|
||
@property | ||
def variance(self): | ||
return 4 * self.base_dist.variance | ||
|
||
|
||
class _JointTSDistribution(torch.distributions.Distribution): | ||
def __init__(self, marginal_t, marginal_s): | ||
super().__init__() | ||
self.marginal_t, self.marginal_s = marginal_t, marginal_s | ||
|
||
def rsample(self, sample_shape=()): | ||
return torch.cat( | ||
( | ||
self.marginal_t.rsample(sample_shape).unsqueeze(-1), | ||
self.marginal_s.rsample(sample_shape + self.marginal_t.scale.shape), | ||
), | ||
-1, | ||
) | ||
|
||
def log_prob(self, value): | ||
return self.marginal_t.log_prob(value[..., 0]) + self.marginal_s.log_prob( | ||
value[..., 1:] | ||
) | ||
|
||
def entropy(self): | ||
return self.marginal_t.entropy() + self.marginal_s.entropy() | ||
|
||
|
||
class PowerSpherical(torch.distributions.TransformedDistribution): | ||
|
||
arg_constraints = { | ||
"loc": torch.distributions.constraints.real, | ||
"scale": torch.distributions.constraints.positive, | ||
} | ||
|
||
has_rsample = True | ||
|
||
def __init__(self, loc, scale, validate_args=None): | ||
|
||
if isinstance(scale, torch.Tensor) and len(scale.shape) > 1: | ||
assert ( | ||
scale.shape[-1] != 1 | ||
), "`scale' cannot have 1 as last dimention when `isinstance(scale, torch.Tensor)' and `len(scale.shape) > 1'." | ||
|
||
super().__init__( | ||
_JointTSDistribution( | ||
MarginalTDistribution( | ||
loc.shape[-1], scale, validate_args=validate_args | ||
), | ||
HypersphericalUniform( | ||
loc.shape[-1] - 1, | ||
device=loc.device, | ||
dtype=loc.dtype, | ||
validate_args=validate_args, | ||
), | ||
), | ||
[_TTransform(), _HouseholderRotationTransform(loc),], | ||
) | ||
self.loc, self.scale, = loc, scale | ||
|
||
def log_prob(self, value): | ||
return self.log_normalizer() + self.scale * torch.log1p( | ||
(self.loc * value).sum(-1) | ||
) | ||
|
||
def log_normalizer(self): | ||
alpha = self.base_dist.marginal_t.base_dist.concentration1 | ||
beta = self.base_dist.marginal_t.base_dist.concentration0 | ||
return -( | ||
(alpha + beta) * math.log(2) | ||
+ torch.lgamma(alpha) | ||
- torch.lgamma(alpha + beta) | ||
+ beta * math.log(math.pi) | ||
) | ||
|
||
def entropy(self): | ||
alpha = self.base_dist.marginal_t.base_dist.concentration1 | ||
beta = self.base_dist.marginal_t.base_dist.concentration0 | ||
return -( | ||
self.log_normalizer() | ||
+ self.scale | ||
* (math.log(2) + torch.digamma(alpha) - torch.digamma(alpha + beta)) | ||
) | ||
|
||
@property | ||
def mean(self): | ||
return self.loc * self.base_dist.marginal_t.mean | ||
|
||
@property | ||
def stddev(self): | ||
return self.variance.sqrt() | ||
|
||
@property | ||
def variance(self): | ||
alpha = self.base_dist.marginal_t.base_dist.concentration1 | ||
beta = self.base_dist.marginal_t.base_dist.concentration0 | ||
ratio = (alpha + beta) / (2 * beta) | ||
return self.base_dist.marginal_t.variance * ( | ||
(1 - ratio) * self.loc.unsqueeze(-1) @ self.loc.unsqueeze(-2) | ||
+ ratio * torch.eye(self.loc.shape[-1]) | ||
) | ||
|
||
|
||
@register_kl(PowerSpherical, HypersphericalUniform) | ||
def _kl_powerspherical_uniform(p, q): | ||
return -p.entropy() + q.entropy() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
import os | ||
from setuptools import setup | ||
from setuptools import find_packages | ||
|
||
setup( | ||
name="power_spherical", | ||
version="0.1.0", | ||
author="Nicola De Cao", | ||
author_email="[email protected]", | ||
description="Pytorch implementation of the Power Spherical distribution", | ||
license="MIT", | ||
keywords="pytorch machine-learning deep-learning manifold-learning", | ||
url="https://nicola-decao.github.io", | ||
download_url="https://github.com/nicola-decao/power_spherical", | ||
long_description=open(os.path.join(os.path.dirname(__file__), "README.md")).read(), | ||
install_requires=["torch>=1.5.0"], | ||
packages=find_packages(), | ||
) |