- The expriments were conducted using single V100 GPU with batch size 4.
Model | Backbone | Resolution | Training Iters | mIoU(val) | mIoU(test) | Links |
---|---|---|---|---|---|---|
Baseline | ResNet-18 | 1024x1024 | 300000 | 76.77 | 74.48 | model |
Trianglenet | ResNet-18 | 1024x1024 | 300000 | 78.96 | 77.36 | model |
- All these inference speeds were measured using PaddleInference Api on a A100 GPU device. During this process, we use the PaddlePaddle implementations of these state-of-the-art models provided by PaddleSeg for fair comparision.
Model | Backbone | Test Resolution | mIoU(test) | FPS |
---|---|---|---|---|
ESPNetV2 | - | 512x1024 | 66.2 | 126.5 |
BiSeNetV1-L | ResNet18 | 768x1536 | 74.7 | 83.9 |
STDC1-Seg50 | STDC1 | 512x1024 | 71.9 | 262.1 |
STDC2-Seg50 | STDC2 | 512x1024 | 73.4 | 207.4 |
STDC1-Seg75 | STDC1 | 768x1536 | 75.3 | 152.7 |
STDC2-Seg75 | STDC2 | 768x1536 | 76.8 | 131.5 |
PP-LiteSeg-T1 | STDC1 | 512x1024 | 72.0 | 219.4 |
PP-LiteSeg-B1 | STDC2 | 512x1024 | 73.9 | 184.3 |
PP-LiteSeg-T2 | STDC1 | 768x1536 | 74.9 | 141.2 |
PP-LiteSeg-B2 | STDC2 | 768x1536 | 77.5 | 118.4 |
TriangleNet | ResNet18 | 1024x2048 | 77.4 | 46.2 |
- The expriments were conducted using 4 V100 GPUs with batch size 16.
Model | Backbone | Resolution | Training Iters | mIoU(test) |
---|---|---|---|---|
Baseline | ResNet-18 | 1024x1024 | 20000 | 65.64 |
TriangleNet | ResNet-18 | 1024x1024 | 20000 | 70.97 |