Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add quick SSD demo #683

Merged
merged 3 commits into from
Mar 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions single_stage_detector/.dockerignore
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
mlcube/workspace/
13 changes: 13 additions & 0 deletions single_stage_detector/mlcube/mlcube.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -42,3 +42,16 @@ tasks:
log_dir: logs/
outputs:
checker_logs_dir: checker_logs/
download_demo:
entrypoint: ../scripts/download_openimages_demo.sh -a
parameters:
outputs:
data_dir: demo/
demo:
entrypoint: ./run_demo.sh -a
# torchrun --standalone --nnodes=1 train.py --epochs=1 --batch-size=16 --eval-batch-size=16
parameters:
inputs:
data_dir: demo/
outputs:
log_dir: logs/
2 changes: 1 addition & 1 deletion single_stage_detector/requirements.txt
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
scikit-image>=0.15.0
ujson>=4.0.2
matplotlib>=3.5.1
pycocotools==2.0.4
pycocotools>=2.0.4
git+https://github.com/mlcommons/[email protected]
fiftyone==0.15.1
30 changes: 30 additions & 0 deletions single_stage_detector/scripts/download_openimages_demo.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
#!/bin/bash

: "${DATASET_PATH:=/datasets/open-images-v6-mlperf}"

while [ "$1" != "" ]; do
case $1 in
-d | --dataset-path)
shift
DATASET_PATH=$1
;;
--data_dir=*)
if [[ "$PWD" = /workspace/single_stage_detector/ssd ]]; then
cd ../scripts
DATASET_PATH="${1#*=}"
fi
;;
esac
shift
done

echo "saving to"
echo $DATASET_PATH
ls $DATASET_PATH

MLPERF_CLASSES=('Apple' 'Banana')

python fiftyone_openimages.py \
--dataset-dir=${DATASET_PATH} \
--output-labels="openimages-mlperf.json" \
--classes "${MLPERF_CLASSES[@]}"
114 changes: 114 additions & 0 deletions single_stage_detector/ssd/run_demo.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
#!/bin/bash

# Copyright (c) 2018-2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# runs benchmark and reports time to convergence
# to use the script:
# run_and_time.sh

set +x
set -e

# Only rank print
[ "${SLURM_LOCALID-}" -ne 0 ] && set +x


# start timing
start=$(date +%s)
start_fmt=$(date +%Y-%m-%d\ %r)
echo "STARTING TIMING RUN AT $start_fmt"

# Set variables
[ "${DEBUG}" = "1" ] && set -x
BATCHSIZE=${BATCHSIZE:-4}
EVALBATCHSIZE=${EVALBATCHSIZE:-${BATCHSIZE}}
NUMEPOCHS=${NUMEPOCHS:-1}
LOG_INTERVAL=${LOG_INTERVAL:-20}
DATASET_DIR=${DATASET_DIR:-"/datasets/open-images-v6-mlperf"}
TORCH_HOME=${TORCH_HOME:-"$(pwd)/torch-model-cache"}

# Handle MLCube parameters
while [ $# -gt 0 ]; do
case "$1" in
--data_dir=*)
DATASET_DIR="${1#*=}"
;;
--log_dir=*)
LOG_DIR="${1#*=}"
;;
*)
esac
shift
done


# run benchmark
echo "running benchmark"



declare -a CMD
if [ -n "${SLURM_LOCALID-}" ]; then
# Mode 1: Slurm launched a task for each GPU and set some envvars; no need for parallel launch
cluster=''
if [[ "${DGXSYSTEM}" == DGX2* ]]; then
cluster='circe'
fi
if [[ "${DGXSYSTEM}" == DGXA100* ]]; then
cluster='selene'
fi
if [ "${SLURM_NTASKS}" -gt "${SLURM_JOB_NUM_NODES}" ]; then
CMD=( './bind.sh' "--cluster=${cluster}" '--ib=single' '--' ${NSYSCMD} 'python' '-u' )
else
CMD=( 'python' '-u' )
fi
else
# Mode 2: Single-node Docker; need to launch tasks with torchrun
CMD=( "torchrun" "--standalone" "--nnodes=1" "--nproc_per_node=1" )
[ "$MEMBIND" = false ] && CMD+=( "--no_membind" )
fi

PARAMS=(
--batch-size "${BATCHSIZE}"
--eval-batch-size "${EVALBATCHSIZE}"
--epochs "${NUMEPOCHS}"
--print-freq "${LOG_INTERVAL}"
--data-path "${DATASET_DIR}"
)

# run training
"${CMD[@]}" train.py "${PARAMS[@]}" ${EXTRA_PARAMS} ; ret_code=$?

# Copy log file to MLCube log folder
if [ "$LOG_DIR" != "" ]; then
timestamp=$(date +%Y%m%d_%H%M%S)
cp mlperf_compliance.log "$LOG_DIR/mlperf_compliance_$timestamp.log"
fi

set +x

sleep 3
if [[ $ret_code != 0 ]]; then exit $ret_code; fi

# end timing
end=$(date +%s)
end_fmt=$(date +%Y-%m-%d\ %r)
echo "ENDING TIMING RUN AT $end_fmt"

# report result
result=$(( $end - $start ))
result_name="SINGLE_STAGE_DETECTOR"

echo "RESULT,$result_name,,$result,nvidia,$start_fmt"
Loading