An awesome list of references for MLOps - Machine Learning Operations 👉 ml-ops.org
- Machine Learning Operations: You Design It, You Train It, You Run It!
- MLOps SIG Specification
- ML in Production
- Awesome production machine learning: State of MLOps Tools and Frameworks
- Udemy “Deployment of ML Models”
- Full Stack Deep Learning
- Engineering best practices for Machine Learning
- 🚀 Putting ML in Production
- Stanford MLSys Seminar Series
- IBM ML Operationalization Starter Kit
- Productize ML. A self-study guide for Developers and Product Managers building Machine Learning products.
- MLOps (Machine Learning Operations) Fundamentals on GCP
- ML full Stack preparation
- MLOps.community
- CDF Special Interest Group - MLOps
- RsqrdAI - Robust and Responsible AI
- DataTalks.Club
- Synthetic Data Community
- “Machine Learning Engineering” by Andriy Burkov, 2020
- "ML Ops: Operationalizing Data Science" by David Sweenor, Steven Hillion, Dan Rope, Dev Kannabiran, Thomas Hill, Michael O'Connell
- "Building Machine Learning Powered Applications" by Emmanuel Ameisen
- "Building Machine Learning Pipelines" by Hannes Hapke, Catherine Nelson, 2020, O’Reilly
- "Managing Data Science" by Kirill Dubovikov
- "Accelerated DevOps with AI, ML & RPA: Non-Programmer's Guide to AIOPS & MLOPS" by Stephen Fleming
- "Evaluating Machine Learning Models" by Alice Zheng
- Agile AI. 2020. By Carlo Appugliese, Paco Nathan, William S. Roberts. O'Reilly Media, Inc.
- "Machine Learning Logistics". 2017. By T. Dunning et al. O'Reilly Media Inc.
- "Machine Learning Design Patterns" by Valliappa Lakshmanan, Sara Robinson, Michael Munn. O'Reilly 2020
- "Serving Machine Learning Models: A Guide to Architecture, Stream Processing Engines, and Frameworks" by Boris Lublinsky, O'Reilly Media, Inc. 2017
- "Kubeflow for Machine Learning" by Holden Karau, Trevor Grant, Ilan Filonenko, Richard Liu, Boris Lublinsky
- "Clean Machine Learning Code" by Moussa Taifi. Leanpub. 2020
- E-Book "Practical MLOps. How to Get Ready for Production Models"
- "Introducing MLOps" by Mark Treveil, et al. O'Reilly Media, Inc. 2020
- "Machine Learning for Data Streams with Practical Examples in MOA", Bifet, Albert and Gavald`a, Ricard and Holmes, Geoff and Pfahringer, Bernhard, MIT Press, 2018
- "Machine Learning Product Manual" by Laszlo Sragner, Chris Kelly
- "Data Science Bootstrap Notes" by Eric J. Ma
- "Data Teams by Jesse Anderson, 2020"
- Continuous Delivery for Machine Learning (by Thoughtworks)
- What is MLOps? NVIDIA Blog
- MLSpec: A project to standardize the intercomponent schemas for a multi-stage ML Pipeline.
- The 2021 State of Enterprise Machine Learning | State of Enterprise ML 2020: PDF and Interactive
- Organizing machine learning projects: project management guidelines.
- Rules for ML Project (Best practices)
- ML Pipeline Template
- Data Science Project Structure
- Reproducible ML
- ML project template facilitating both research and production phases.
- Machine learning requires a fundamentally different deployment approach. As organizations embrace machine learning, the need for new deployment tools and strategies grows.
- Introducting Flyte: A Cloud Native Machine Learning and Data Processing Platform
- Why is DevOps for Machine Learning so Different?
- Lessons learned turning machine learning models into real products and services – O’Reilly
- MLOps: Model management, deployment and monitoring with Azure Machine Learning
- Guide to File Formats for Machine Learning: Columnar, Training, Inferencing, and the Feature Store
- Architecting a Machine Learning Pipeline How to build scalable Machine Learning systems
- Why Machine Learning Models Degrade In Production
- Concept Drift and Model Decay in Machine Learning
- Bringing ML to Production
- A Tour of End-to-End Machine Learning Platforms
- MLOps: Continuous delivery and automation pipelines in machine learning
- AI meets operations
- What would machine learning look like if you mixed in DevOps? Wonder no more, we lift the lid on MLOps
- Forbes: The Emergence Of ML Ops
- Cognilytica Report "ML Model Management and Operations 2020 (MLOps)"
- Introducing Cloud AI Platform Pipelines
- A Guide to Production Level Deep Learning
- The 5 Components Towards Building Production-Ready Machine Learning Systems
- Deep Learning in Production (references about deploying deep learning-based models in production)
- Machine Learning Experiment Tracking
- The Team Data Science Process (TDSP)
- MLOps Solutions (Azure based)
- Monitoring ML pipelines
- Deployment & Explainability of Machine Learning COVID-19 Solutions at Scale with Seldon Core and Alibi
- Demystifying AI Infrastructure
- Organizing machine learning projects: project management guidelines.
- The Checklist for Machine Learning Projects (from Aurélien Géron,"Hands-On Machine Learning with Scikit-Learn and TensorFlow")
- Data Project Checklist by Jeremy Howard
- MLOps: not as Boring as it Sounds
- 10 Steps to Making Machine Learning Operational. Cloudera White Paper
- MLOps is Not Enough. The Need for an End-to-End Data Science Lifecycle Process.
- Data Science Lifecycle Repository Template
- Template: code and pipeline definition for a machine learning project demonstrating how to automate an end to end ML/AI workflow.
- Nitpicking Machine Learning Technical Debt
- The Best Tools, Libraries, Frameworks and Methodologies that Machine Learning Teams Actually Use – Things We Learned from 41 ML Startups
- Software Engineering for AI/ML - An Annotated Bibliography
- Intelligent System. Machine Learning in Practice
- CMU 17-445/645: Software Engineering for AI-Enabled Systems (SE4AI)
- Machine Learning is Requirements Engineering
- Machine Learning Reproducibility Checklist
- Machine Learning Ops. A collection of resources on how to facilitate Machine Learning Ops with GitHub.
- Task Cheatsheet for Almost Every Machine Learning Project A checklist of tasks for building End-to-End ML projects
- Web services vs. streaming for real-time machine learning endpoints
- How PyTorch Lightning became the first ML framework to run continuous integration on TPUs
- The ultimate guide to building maintainable Machine Learning pipelines using DVC
- Continuous Machine Learning (CML) is CI/CD for Machine Learning Projects (DVC)
- What I learned from looking at 200 machine learning tools | Update: MLOps Tooling Landscape v2 (+84 new tools) - Dec '20
- Big Data & AI Landscape
- Deploying Machine Learning Models as Data, not Code — A better match?
- “Thou shalt always scale” — 10 commandments of MLOps
- Three Risks in Building Machine Learning Systems
- Blog about ML in production (by maiot.io)
- Back to the Machine Learning fundamentals: How to write code for Model deployment. Part 1, Part 2, Part 3
- MLOps: Machine Learning as an Engineering Discipline
- ML Engineering on Google Cloud Platform (hands-on labs and code samples)
- Deep Reinforcement Learning in Production. The use of Reinforcement Learning to Personalize User Experience at Zynga
- What is Data Observability?
- A Practical Guide to Maintaining Machine Learning in Production
- Continuous Machine Learning. Part 1, Part 2. Part 3 is coming soon.
- The Agile approach in data science explained by an ML expert
- Here is what you need to look for in a model server to build ML-powered services
- The problem with AI developer tools for enterprises (and what IKEA has to do with it)
- Streaming Machine Learning with Tiered Storage
- Best practices for performance and cost optimization for machine learning (Google Cloud)
- Lean Data and Machine Learning Operations
- A Brief Guide to Running ML Systems in Production Best Practices for Site Reliability Engineers
- AI engineering practices in the wild - SIG | Getting software right for a healthier digital world
- SE-ML | The 2020 State of Engineering Practices for Machine Learning
- Awesome Software Engineering for Machine Learning (GitHub repository)
- Sampling isn’t enough, profile your ML data instead
- Reproducibility in ML: why it matters and how to achieve it
- 12 Factors of reproducible Machine Learning in production
- MLOps: More Than Automation
- Lean Data Science
- Engineering Skills for Data Scientists
- DAGsHub Blog. Read about data science and machine learning workflows, MLOps, and open source data science
- Data Science Project Flow for Startups
- Data Science Engineering at Shopify
- Building state-of-the-art machine learning technology with efficient execution for the crypto economy
- Completing the Machine Learning Loop
- Deploying Machine Learning Models: A Checklist
- Global MLOps and ML tools landscape (by MLReef)
- Why all Data Science teams need to get serious about MLOps
- MLOps Values (by Bart Grasza)
- Machine Learning Systems Design (by Chip Huyen)
- Designing an ML system (Stanford | CS 329 | Chip Huyen)
- How COVID-19 Has Infected AI Models (about the data drift or model drift concept)
- Microkernel Architecture for Machine Learning Library. An Example of Microkernel Architecture with Python Metaclass
- Machine Learning in production: the Booking.com approach
- What I Learned From Attending TWIMLcon 2021 (by James Le)
- Gartner’s 3-Stage MLOps Framework
- Designing ML Orchestration Systems for Startups. A case study in building a lightweight production-grade ML orchestration system
- Open-source Workflow Management Tools: A Survey by Ploomber
- How to Compare ML Experiment Tracking Tools to Fit Your Data Science Workflow (by dagshub)
- 15 Best Tools for Tracking Machine Learning Experiments
- Feature Stores for Machine Learning Medium Blog
- MLOps with a Feature Store
- Feature Stores for ML
- Hopsworks: Data-Intensive AI with a Feature Store
- Feast: An open-source Feature Store for Machine Learning
- What is a Feature Store?
- ML Feature Stores: A Casual Tour
- Comprehensive List of Feature Store Architectures for Data Scientists and Big Data Professionals
- ML Engineer Guide: Feature Store vs Data Warehouse (vendor blog)
- Building a Gigascale ML Feature Store with Redis, Binary Serialization, String Hashing, and Compression (DoorDash blog)
- Feature Stores: Variety of benefits for Enterprise AI.
- Feature Store as a Foundation for Machine Learning
- ML Feature Serving Infrastructure at Lyft
- Feature Stores for Self-Service Machine Learning
- The state of data quality in 2020 – O’Reilly
- Why We Need DevOps for ML Data
- Data Preparation for Machine Learning (7-Day Mini-Course)
- Best practices in data cleaning: A Complete Guide to Everything You Need to Do Before and After Collecting Your Data.
- 17 Strategies for Dealing with Data, Big Data, and Even Bigger Data
- DataOps Data Architecture
- Data Orchestration — A Primer
- 4 Data Trends to Watch in 2020
- CSE 291D / 234: Data Systems for Machine Learning
- A complete picture of the modern data engineering landscape
- Continuous Integration for your data with GitHub Actions and Great Expectations. One step closer to CI/CD for your data pipelines
- Emerging Architectures for Modern Data Infrastructure
- Awesome Data Engineering. Learning path and resources to become a data engineer
- Data Quality at Airbnb Part 1 | Part 2
- DataHub: Popular metadata architectures explained
- Financial Times Data Platform: From zero to hero. An in-depth walkthrough of the evolution of our Data Platform
- Alki, or how we learned to stop worrying and love cold metadata (Dropbox)
- A Beginner's Guide to Clean Data. Practical advice to spot and avoid data quality problems (by Benjamin Greve)
- ML Lake: Building Salesforce’s Data Platform for Machine Learning
- Data Catalog 3.0: Modern Metadata for the Modern Data Stack
- Metadata Management Systems
- Essential resources for data engineers (a curated recommended read and watch list for scalable data processing)
- Comprehensive and Comprehensible Data Catalogs: The What, Who, Where, When, Why, and How of Metadata Management (Paper)
- What I Learned From Attending DataOps Unleashed 2021 (byJames Le)
- Uber's Journey Toward Better Data Culture From First Principles
- Cerberus - lightweight and extensible data validation library for Python
- AI Infrastructure for Everyone: DeterminedAI
- Deploying R Models with MLflow and Docker
- What Does it Mean to Deploy a Machine Learning Model?
- Software Interfaces for Machine Learning Deployment
- Batch Inference for Machine Learning Deployment
- AWS Cost Optimization for ML Infrastructure - EC2 spend
- CI/CD for Machine Learning & AI
- Itaú Unibanco: How we built a CI/CD Pipeline for machine learning with online training in Kubeflow
- 101 For Serving ML Models
- Deploying Machine Learning models to production — Inference service architecture patterns
- Serverless ML: Deploying Lightweight Models at Scale
- ML Model Rollout To Production. Part 1 | Part 2
- Deploying Python ML Models with Flask, Docker and Kubernetes
- Deploying Python ML Models with Bodywork
- Framework for a successful Continuous Training Strategy. When should the model be retrained? What data should be used? What should be retrained? A data-driven approach
- Building dashboards for operational visibility (AWS)
- Monitoring Machine Learning Models in Production
- Effective testing for machine learning systems
- Unit Testing Data: What is it and how do you do it?
- How to Test Machine Learning Code and Systems (Accompanying code)
- Wu, T., Dong, Y., Dong, Z., Singa, A., Chen, X. and Zhang, Y., 2020. Testing Artificial Intelligence System Towards Safety and Robustness: State of the Art. IAENG International Journal of Computer Science, 47(3).
- Multi-Armed Bandits and the Stitch Fix Experimentation Platform
- A/B Testing Machine Learning Models
- Data validation for machine learning. Polyzotis, N., Zinkevich, M., Roy, S., Breck, E. and Whang, S., 2019. Proceedings of Machine Learning and Systems
- Testing machine learning based systems: a systematic mapping
- Explainable Monitoring: Stop flying blind and monitor your AI
- WhyLogs: Embrace Data Logging Across Your ML Systems
- Evidently AI. Insights on doing machine learning in production. (Vendor blog.)
- The definitive guide to comprehensively monitoring your AI
- Introduction to Unit Testing for Machine Learning
- Production Machine Learning Monitoring: Outliers, Drift, Explainers & Statistical Performance
- Test-Driven Development in MLOps Part 1
- Domain-Specific Machine Learning Monitoring
- Introducing ML Model Performance Management (Blog by fiddler)
- MLOps Infrastructure Stack Canvas
- Rise of the Canonical Stack in Machine Learning. How a Dominant New Software Stack Will Unlock the Next Generation of Cutting Edge AI Apps
- AI Infrastructure Alliance. Building the canonical stack for AI/ML
- Linux Foundation AI Foundation
- ML Infrastructure Tools for Production | Part 1 — Production ML — The Final Stage of the Model Workflow | Part 2 — Model Deployment and Serving
- The MLOps Stack Template (by valohai)
A list of scientific and industrial papers and resources about Machine Learning operalization since 2015. See more.
- DeliveryConf 2020. "Continuous Delivery For Machine Learning: Patterns And Pains" by Emily Gorcenski
- MLOps Conference: Talks from 2019
- Kubecon 2019: Flyte: Cloud Native Machine Learning and Data Processing Platform
- Kubecon 2019: Running LargeScale Stateful workloads on Kubernetes at Lyft
- A CI/CD Framework for Production Machine Learning at Massive Scale (using Jenkins X and Seldon Core)
- MLOps Virtual Event (Databricks)
- MLOps NY conference 2019
- MLOps.community YouTube Channel
- MLinProduction YouTube Channel
- Introducing MLflow for End-to-End Machine Learning on Databricks. Spark+AI Summit 2020. Sean Owen
- MLOps Tutorial #1: Intro to Continuous Integration for ML
- Machine Learning At Speed: Operationalizing ML For Real-Time Data Streams (2019)
- Damian Brady - The emerging field of MLops
- MLOps - Entwurf, Entwicklung, Betrieb (INNOQ Podcast in German)
- Instrumentation, Observability & Monitoring of Machine Learning Models
- Efficient ML engineering: Tools and best practices
- Beyond the jupyter notebook: how to build data science products
- An introduction to MLOps on Google Cloud (First 19 min are vendor-, language-, and framework-agnostic. @visenger)
- How ML Breaks: A Decade of Outages for One Large ML Pipeline
- Clean Machine Learning Code: Practical Software Engineering
- Machine Learning Engineering: 10 Fundamentale Praktiken
- Architecture of machine learning systems (3-part series)
- Machine Learning Design Patterns
- The laylist that covers techniques and approaches for model deployment on to production
- Introducing FBLearner Flow: Facebook’s AI backbone
- TFX: A TensorFlow-Based Production-Scale Machine Learning Platform
- Accelerate your ML and Data workflows to production: Flyte
- Getting started with Kubeflow Pipelines
- Meet Michelangelo: Uber’s Machine Learning Platform
- Meson: Workflow Orchestration for Netflix Recommendations
- What are Azure Machine Learning pipelines?
- Uber ATG’s Machine Learning Infrastructure for Self-Driving Vehicles
- An overview of ML development platforms
- Snorkel AI: Putting Data First in ML Development
- A Tour of End-to-End Machine Learning Platforms
- Introducing WhyLabs, a Leap Forward in AI Reliability
- Project: Ease.ml (ETH Zürich)
- Bodywork: model-training and deployment automation
- Book, Aurélien Géron,"Hands-On Machine Learning with Scikit-Learn and TensorFlow"
- Foundations of Machine Learning
- Best Resources to Learn Machine Learning
- Awesome TensorFlow
- "Papers with Code" - Browse the State-of-the-Art in Machine Learning
- Zhi-Hua Zhou. 2012. Ensemble Methods: Foundations and Algorithms. Chapman & Hall/CRC.
- Feature Engineering for Machine Learning. Principles and Techniques for Data Scientists. By Alice Zheng, Amanda Casari
- Google Research: Looking Back at 2019, and Forward to 2020 and Beyond
- O’Reilly: The road to Software 2.0
- Machine Learning and Data Science Applications in Industry
- Curated papers, articles, and blogs on data science & machine learning in production.
- Deep Learning for Anomaly Detection
- Federated Learning for Mobile Keyboard Prediction
- Federated Learning. Building better products with on-device data and privacy on default
- Federated Learning: Collaborative Machine Learning without Centralized Training Data
- Yang, Q., Liu, Y., Cheng, Y., Kang, Y., Chen, T. and Yu, H., 2019. Federated learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 13(3). Chapters 1 and 2.
- Federated Learning by FastForward
- THE FEDERATED & DISTRIBUTED MACHINE LEARNING CONFERENCE
- Federated Learning: Challenges, Methods, and Future Directions
- Book: Molnar, Christoph. "Interpretable machine learning. A Guide for Making Black Box Models Explainable", 2019
- Book: Hutter, Frank, Lars Kotthoff, and Joaquin Vanschoren. "Automated Machine Learning". Springer,2019.
- ML resources by topic, curated by the community.
- An Introduction to Machine Learning Interpretability, by Patrick Hall, Navdeep Gill, 2nd Edition. O'Reilly 2019
- Examples of techniques for training interpretable machine learning (ML) models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.
- Paper: "Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence", by Sebastian Raschka, Joshua Patterson, and Corey Nolet. 2020
- Distill: Machine Learning Research
- AtHomeWithAI: Curated Resource List by DeepMind
- Awesome Data Science
- Intro to probabilistic programming. A use case using Tensorflow-Probability (TFP)
- Dive into Snorkel: Weak-Superversion on German Texts. inovex Blog
- Dive into Deep Learning. An interactive deep learning book with code, math, and discussions. Provides NumPy/MXNet, PyTorch, and TensorFlow implementations
- Data Science Collected Resources (GitHub repository)
- Set of illustrated Machine Learning cheatsheets
- "Machine Learning Bookcamp" by Alexey Grigorev
- 130 Machine Learning Projects Solved and Explained
- Machine learning cheat sheet
- Stateoftheart AI. An open-data and free platform built by the research community to facilitate the collaborative development of AI
- Online Machine Learning Courses: 2020 Edition
- End-to-End Machine Learning Library
- Machine Learning Toolbox (by Amit Chaudhary)
- Causality for Machine Learning
- Causal Inference for the Brave and True
- Causal Inference
- A resource list for causality in statistics, data science and physics
- Learning from data. Caltech
- Machine Learning Glossary
- The Twelve Factors
- Book "Accelerate: The Science of Lean Software and DevOps: Building and Scaling High Performing Technology Organizations", 2018 by Nicole Forsgren et.al
- Book "The DevOps Handbook" by Gene Kim, et al. 2016
- State of DevOps 2019
- Clean Code concepts adapted for machine learning and data science.
- School of SRE
- 10 Laws of Software Engineering That People Ignore
- The Patterns of Scalable, Reliable, and Performant Large-Scale Systems
- What you need to know about product management for AI. A product manager for AI does everything a traditional PM does, and much more.
- Bringing an AI Product to Market. Previous articles have gone through the basics of AI product management. Here we get to the meat: how do you bring a product to market?
- The People + AI Guidebook
- User Needs + Defining Success
- Building machine learning products: a problem well-defined is a problem half-solved.
- Talk: Designing Great ML Experiences (Apple)
- Machine Learning for Product Managers
- Understanding the Data Landscape and Strategic Play Through Wardley Mapping
- Techniques for prototyping machine learning systems across products and features
- Machine Learning and User Experience: A Few Resources
- AI ideation canvas
- Ideation in AI
- Book: "Prediction Machines: The Simple Economics of Artificial Intelligence"
- Book: "The AI Organization" by David Carmona
- Book: "Succeeding with AI". 2020. By Veljko Krunic. Manning Publications
- A list of articles about AI and the economy
- Gartner AI Trends 2019
- Global AI Survey: AI proves its worth, but few scale impact
- Getting started with AI? Start here! Everything you need to know to dive into your project
- 11 questions to ask before starting a successful Machine Learning project
- What AI still can’t do
- Demystifying AI Part 4: What is an AI Canvas and how do you use it?
- A Data Science Workflow Canvas to Kickstart Your Projects
- Is your AI project a nonstarter? Here’s a reality check(list) to help you avoid the pain of learning the hard way
- What is THE main reason most ML projects fail?
- Designing great data products. The Drivetrain Approach: A four-step process for building data products.
- The New Business of AI (and How It’s Different From Traditional Software)
- The idea maze for AI startups
- The Enterprise AI Challenge: Common Misconceptions
- Misconception 1 (of 5): Enterprise AI Is Primarily About The Technology
- Misconception 2 (of 5): Automated Machine Learning Will Unlock Enterprise AI
- Three Principles for Designing ML-Powered Products
- A Step-by-Step Guide to Machine Learning Problem Framing
- AI adoption in the enterprise 2020
- How Adopting MLOps can Help Companies With ML Culture?
- Weaving AI into Your Organization
- What to Do When AI Fails
- Introduction to Machine Learning Problem Framing
- Structured Approach for Identifying AI Use Cases
- Book: "Machine Learning for Business" by Doug Hudgeon, Richard Nichol, O'reilly
- Why Commercial Artificial Intelligence Products Do Not Scale (FemTech)
- Google Cloud’s AI Adoption Framework (White Paper)
- Data Science Project Management
- Book: "Competing in the Age of AI" by Marco Iansiti, Karim R. Lakhani. Harvard Business Review Press. 2020
- The Three Questions about AI that Startups Need to Ask. The first is: Are you sure you need AI?
- Taming the Tail: Adventures in Improving AI Economics
- Managing the Risks of Adopting AI Engineering
- Get rid of AI Saviorism
- Collection of articles listing reasons why data science projects fail
- How to Choose Your First AI Project by Andrew Ng
- How to Set AI Goals
- Expanding AI's Impact With Organizational Learning
- Potemkin Data Science
- When Should You Not Invest in AI?
This topic is extracted into our new Awesome ML Model Governace repository
- ML in Production newsletter
- MLOps.community
- Andriy Burkov newsletter
- Decision Intelligence by Cassie Kozyrkov
- Laszlo's Newsletter about Data Science
- Data Elixir newsletter for a weekly dose of the top data science picks from around the web. Covering machine learning, data visualization, analytics, and strategy.
- The Data Science Roundup by Tristan Handy
- Vicki Boykis Newsletter about Data Science
- KDnuggets News
- Analytics Vidhya, Any questions on business analytics, data science, big data, data visualizations tools and techniques
- Data Science Weekly Newsletter: A free weekly newsletter featuring curated news, articles and jobs related to Data Science
- The Machine Learning Engineer Newsletter
- Gradient Flow helps you stay ahead of the latest technology trends and tools with in-depth coverage, analysis and insights. See the latest on data, technology and business, with a focus on machine learning and AI
- Your guide to AI by Nathan Benaich. Monthly analysis of AI technology, geopolitics, research, and startups.
- O'Reilly Data & AI Newsletter
- deeplearning.ai’s newsletter by Andrew Ng
- Deep Learning Weekly
- Import AI is a weekly newsletter about artificial intelligence, read by more than ten thousand experts. By Jack Clark.
- AI Ethics Weekly
- Announcing Projects To Know, a weekly machine intelligence and data science newsletter
- TWIML: This Week in Machine Learning and AI newsletter
- featurestore.org: Monthly Newsletter on Feature Stores for ML
- DataTalks.Club Community: Slack, Newsletter, Podcast, Weeekly Events
- Machine Learning Ops Roundup
- Data Science Programming Newsletter by Eric Ma