Skip to content

Package to read and analyze MetIDQ output

License

Notifications You must be signed in to change notification settings

luisherfurth/MetAlyzer

 
 

Repository files navigation

MetAlyzer

R-CMD-check license metacran downloads

An R Package to read and analyze MetIDQ™ output

The package provides methods to read output files from the MetIDQ™ software into R. Metabolomics data is read and reformatted into an S4 object for convenient data handling, statistics and downstream analysis.

Install

There is a version available on CRAN.

install.packages("MetAlyzer")

For the latest version install from GitHub

library(devtools)
install_github("nilsmechtel/MetAlyzer")

Quickstart

The package takes metabolomic measurements and the quantification status (e.g. "Valid", "LOQ", "LOD") as ".xlsx" files generated from the MetIDQ™ software. Additionally, meta data for each sample can be provided for further analysis.

MetAlyzer

This is an extract from one of the provided example data sets. Example_Data

Create MetAlyzer object:

> metalyzer <- MetAlyzer_dataset(file_path = extraction_data())
> show(metalyzer)
-------------------------------------
File name: extraction_data.xlsx
Sheet: 1 
File path: /Library/Frameworks/R.framework/Versions/4.0/Resources/library/MetAlyzer/extdata 
Metabolites: 862 
Classes: 24 
Including metabolism indicators: TRUE 
Number of samples: 74 
Columns meta data: "Plate Bar Code"; "Sample Bar Code"; "Sample Type"; "Sample Description"; "Tissue"; "Sample Volume"; "Measurement Time"
Aggregated data available:  FALSE
-------------------------------------

Show statistics:

> na_metabolites <- summariseConcValues(metalyzer)
-------------------------------------
Quantiles:
        0%        25%        50%        75%       100% 
     0.000      0.028      1.960     22.700 288149.000 

NAs: 4941 (7.96%)
-------------------------------------
> status_list <- summariseQuantData(metalyzer)
-------------------------------------
Valid: 24056 (38.76%)
LOQ: 5790 (9.33%)
LOD: 20577 (33.15%)
Invalid: 11641 (18.76%)
NAs: 0 (0%)
-------------------------------------

Downstream analysis:

For further filtering, statistical analysis and plotting, the data can be reformatted and aggregated into a tibble data frame.

Downstream_Analysis

> renameMetaData(metalyzer, Method = `Sample Description`)
> filterMetaData(metalyzer, !is.na(Tissue))
> aggregated_data <- aggregateData(metalyzer, Tissue, Method)
> aggregated_data
# A tibble: 62,064 × 8
# Groups:   Tissue, Method, Metabolite [20,688]
   ID    Tissue    Method Metabolite Class Concentration Status Valid_Replicates
   <fct> <fct>     <fct>  <fct>      <fct>         <dbl> <fct>  <lgl>           
 1 9     Drosophi… 1      C0         Acyl…       203     Valid  TRUE            
 2 10    Drosophi… 1      C0         Acyl…        86.8   Valid  TRUE            
 3 11    Drosophi… 1      C0         Acyl…       246     Valid  TRUE            
 4 9     Drosophi… 1      C2         Acyl…        29.5   Valid  TRUE            
 5 10    Drosophi… 1      C2         Acyl…        15.8   Valid  TRUE            
 6 11    Drosophi… 1      C2         Acyl…        34.6   Valid  TRUE            
 7 9     Drosophi… 1      C3         Acyl…        39.2   Valid  TRUE            
 8 10    Drosophi… 1      C3         Acyl…         9.29  Valid  TRUE            
 9 11    Drosophi… 1      C3         Acyl…        49.9   Valid  TRUE            
10 9     Drosophi… 1      C3-DC (C4… Acyl…         0.057 LOD    FALSE           
# ℹ 62,054 more rows
# ℹ Use `print(n = ...)` to see more rows

Detailed instructions

For a comprehensive tutorial, please check out the vignette (<Link_to_User_Manual>).

About

Package to read and analyze MetIDQ output

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 94.1%
  • Python 5.9%