Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Torch Dialect][stablehlo] emit aten.rand op and add converter to stablehlo #2413

Merged
merged 3 commits into from
Aug 27, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion e2e_testing/xfail_sets.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,8 @@
LINALG_XFAIL_SET = COMMON_TORCH_MLIR_LOWERING_XFAILS | {
# Lowering Torch Backend IR -> Linalg-on-Tensors Backend IR failed
# 'linalg.depthwise_conv_2d_nchw_chw' op inferred input/output operand #1 has shape's dimension #0 to be 4, but found 8
"Conv2dWithPaddingDilationStrideStaticModule_depthwise_multiplier"
"Conv2dWithPaddingDilationStrideStaticModule_depthwise_multiplier",
"RandModule_basic"
}

TORCHDYNAMO_XFAIL_SET = {
Expand Down Expand Up @@ -62,6 +63,7 @@
# error: failed to legalize operation 'torch.aten.view' that was explicitly marked illegal
"ElementwiseFlattenBroadcastModule_basic",
"FlattenRank0Module_basic",
"RandModule_basic",
"UniformModule_basic",
"UniformStaticShapeModule_basic",
# error: unsupported by backend contract: tensor with unknown rank
Expand Down Expand Up @@ -868,6 +870,7 @@
"RandIntLowModule_basic",
"RandIntModule_basic",
"RandIntPinMemoryModule_basic",
"RandModule_basic",
"UniformStaticShapeModule_basic",
"UniformNoCorrelationModule_basic",
"TupleModule_basic",
Expand Down
27 changes: 27 additions & 0 deletions include/torch-mlir/Dialect/Torch/IR/GeneratedTorchOps.td
Original file line number Diff line number Diff line change
Expand Up @@ -4154,6 +4154,33 @@ def Torch_AtenRandLikeOp : Torch_Op<"aten.rand_like", [
}];
}

def Torch_AtenRandOp : Torch_Op<"aten.rand", [
AllowsTypeRefinement,
HasValueSemantics,
ReadOnly
]> {
let summary = "Generated op for `aten::rand : (int[], int?, int?, Device?, bool?) -> (Tensor)`";
let arguments = (ins
AnyTorchListOfTorchIntType:$size,
AnyTorchOptionalIntType:$dtype,
AnyTorchOptionalIntType:$layout,
AnyTorchOptionalDeviceType:$device,
AnyTorchOptionalBoolType:$pin_memory
);
let results = (outs
AnyTorchTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult AtenRandOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 5, 1);
}
void AtenRandOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 5, 1);
}
}];
}

def Torch_AtenBernoulliOp : Torch_Op<"aten.bernoulli", [
AllowsTypeRefinement,
HasValueSemantics,
Expand Down
31 changes: 31 additions & 0 deletions lib/Conversion/TorchToStablehlo/Basic.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1553,6 +1553,36 @@ LogicalResult ConvertAtenOp<AtenUniformOp>::matchAndRewrite(
return success();
}

template <>
LogicalResult ConvertAtenOp<AtenRandOp>::matchAndRewrite(
AtenRandOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = op.getLoc();
SmallVector<int64_t> size;
if (!matchPattern(adaptor.getSize(), m_TorchListOfConstantInts(size))) {
return rewriter.notifyMatchFailure(op,
"only constant integer size supported");
}
auto shapeTensor = rewriter.create<stablehlo::ConstantOp>(
loc, rewriter.getI64TensorAttr(size));
auto outTy = getTypeConverter()->convertType(op.getType());
auto outElemTy = outTy.cast<RankedTensorType>().getElementType();

if (!outElemTy.isa<FloatType>()) {
return rewriter.notifyMatchFailure(op, "only float type supported");
}

Value from = rewriter.create<arith::ConstantOp>(
loc, rewriter.getFloatAttr(outElemTy, 0.0));
from = hlo::scalarToStablehloTensor(rewriter, op, from, outElemTy);
Value to = rewriter.create<arith::ConstantOp>(
loc, rewriter.getFloatAttr(outElemTy, 1.0));
to = hlo::scalarToStablehloTensor(rewriter, op, to, outElemTy);
rewriter.replaceOpWithNewOp<stablehlo::RngOp>(
op, outTy, from, to, shapeTensor, stablehlo::RngDistribution::UNIFORM);
return success();
}

// Converts `aten.empty.memory_format` to `tensor.empty` op.
template <>
LogicalResult ConvertAtenOp<AtenEmptyMemoryFormatOp>::matchAndRewrite(
Expand Down Expand Up @@ -1844,6 +1874,7 @@ void mlir::torch::torch_to_stablehlo::populateBasicOpPatternsAndLegality(
INSERT_ATENOP_PATTERN(AtenWhereSelfOp);
INSERT_ATENOP_PATTERN(AtenPowTensorTensorOp);
INSERT_ATENOP_PATTERN(AtenUniformOp);
INSERT_ATENOP_PATTERN(AtenRandOp);
INSERT_ATENOP_PATTERN(AtenEmptyMemoryFormatOp);
INSERT_ATENOP_PATTERN(AtenFillScalarOp);
INSERT_ATENOP_PATTERN(AtenFlipOp);
Expand Down
15 changes: 15 additions & 0 deletions lib/Dialect/Torch/Transforms/AbstractInterpLibrary.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -7251,6 +7251,9 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" func.func @\"__torch_mlir_shape_fn.aten.uniform\"(%arg0: !torch.list<int>, %arg1: !torch.float, %arg2: !torch.float, %arg3: !torch.any) -> !torch.list<int> {\n"
" return %arg0 : !torch.list<int>\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.aten.rand\"(%arg0: !torch.list<int>, %arg1: !torch.optional<int>, %arg2: !torch.optional<int>, %arg3: !torch.optional<Device>, %arg4: !torch.optional<bool>) -> !torch.list<int> {\n"
" return %arg0 : !torch.list<int>\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.aten.bernoulli.float\"(%arg0: !torch.list<int>, %arg1: !torch.float, %arg2: !torch.any) -> !torch.list<int> {\n"
" return %arg0 : !torch.list<int>\n"
" }\n"
Expand Down Expand Up @@ -8840,6 +8843,18 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
" return %0#1 : !torch.int\n"
" }\n"
" func.func @\"__torch_mlir_dtype_fn.aten.rand\"(%arg0: !torch.list<int>, %arg1: !torch.optional<int>, %arg2: !torch.optional<int>, %arg3: !torch.optional<Device>, %arg4: !torch.optional<bool>) -> !torch.int {\n"
" %int6 = torch.constant.int 6\n"
" %none = torch.constant.none\n"
" %0 = torch.aten.__is__ %arg1, %none : !torch.optional<int>, !torch.none -> !torch.bool\n"
" %1 = torch.prim.If %0 -> (!torch.int) {\n"
" torch.prim.If.yield %int6 : !torch.int\n"
" } else {\n"
" %2 = torch.prim.unchecked_cast %arg1 : !torch.optional<int> -> !torch.int\n"
" torch.prim.If.yield %2 : !torch.int\n"
" }\n"
" return %1 : !torch.int\n"
" }\n"
" func.func @\"__torch_mlir_dtype_fn.aten._unsafe_view\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.list<int>) -> !torch.int {\n"
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
" return %0#1 : !torch.int\n"
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -671,6 +671,9 @@ def aten〇copy〡shape(self: List[int], src: List[int], non_blocking: bool = Fa
def aten〇uniform〡shape(self: List[int], from_: float = 0., to: float = 1., generator: Any = None) -> List[int]:
return self

def aten〇rand〡shape(size: List[int], dtype: Optional[int] = None, layout: Optional[int] = None, device: Optional[device] = None, pin_memory: Optional[bool] = None) -> List[int]:
return size

@not_present_in_registry
def aten〇bernoulli〇float〡shape(self: List[int], p: float = 0.5, generator: Any = None) -> List[int]:
return self
Expand Down Expand Up @@ -1965,6 +1968,12 @@ def aten〇uniform〡dtype(self_rank_dtype: Tuple[int, int], from_: float = 0.,
self_rank, self_dtype = self_rank_dtype
return self_dtype

@check_dtype_function([Invocation([1]),
Invocation([1], dtype=torch.float16),
Invocation([1], dtype=torch.complex64)])
def aten〇rand〡dtype(size: List[int], dtype: Optional[int] = None, layout: Optional[int] = None, device: Optional[device] = None, pin_memory: Optional[bool] = None) -> int:
return torch.float32 if dtype is None else dtype

@check_dtype_function(_check_tensors_with_the_same_dtype(num_of_tensors=1, size=[1]))
def aten〇_unsafe_view〡dtype(self_rank_dtype: Tuple[int, int], size: List[int]) -> int:
self_rank, self_dtype = self_rank_dtype
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -347,6 +347,7 @@ def emit_with_mutating_variants(key, **kwargs):
# Random number generation
emit_with_mutating_variants("aten::uniform : (Tensor, float, float, Generator?) -> (Tensor)")
emit("aten::rand_like : (Tensor, int?, int?, Device?, bool?, int?) -> (Tensor)")
emit("aten::rand : (int[], int?, int?, Device?, bool?) -> (Tensor)")
emit("aten::bernoulli : (Tensor, Generator?) -> (Tensor)")
emit("aten::bernoulli_.float : (Tensor, float, Generator?) -> (Tensor)")
emit("aten::bernoulli.p : (Tensor, float, Generator?) -> (Tensor)")
Expand Down
22 changes: 22 additions & 0 deletions python/torch_mlir_e2e_test/test_suite/rng.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,28 @@

# ==============================================================================

class RandModule(torch.nn.Module):

def __init__(self):
super().__init__()

@export
@annotate_args([
None,
([1024, 512], torch.float, True)
])
def forward(self, x):
size = x.size()
a = torch.rand(size)
return torch.std(a), torch.mean(a)


@register_test_case(module_factory=lambda: RandModule())
def RandModule_basic(module, tu: TestUtils):
module.forward(tu.rand(1024, 512))

# ==============================================================================

class UniformModule(torch.nn.Module):

def __init__(self):
Expand Down
Loading