Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

new: 2402.07661 #231

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 18 additions & 0 deletions HEPML.bib
Original file line number Diff line number Diff line change
Expand Up @@ -3424,6 +3424,24 @@ @article{Kim:2024rpd
year = "2024"
}


% February 12, 2024
@article{Romao:2024gjx,
author = "Rom\~ao, Jorge Crispim and Crispim Rom\~ao, Miguel",
title = "{Combining evolutionary strategies and novelty detection to go beyond the alignment limit of the Z3 3HDM}",
eprint = "2402.07661",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
reportNumber = "IPPP/24/04, CFTP/24-002",
doi = "10.1103/PhysRevD.109.095040",
journal = "Phys. Rev. D",
volume = "109",
number = "9",
pages = "095040",
year = "2024"
}


% February 12, 2024
@article{Lin:2024eiz,
author = "Lin, Joshua and Luo, Di and Yao, Xiaojun and Shanahan, Phiala E.",
Expand Down
2 changes: 1 addition & 1 deletion HEPML.tex
Original file line number Diff line number Diff line change
Expand Up @@ -201,7 +201,7 @@
\\\textit{This is the task of removing detector distortions. In contrast to parameter estimation, the goal is not to infer model parameters, but instead, the undistorted phase space probability density. This is often also called deconvolution.}
\item \textbf{Domain adaptation}~\cite{Glazier:2024ogg,Kelleher:2024jsh,Kelleher:2024rmb,Zhao:2024ely,Algren:2023qnb,Schreck:2023pzs,Camaiani:2022kul,Nachman:2021opi,Diefenbacher:2020rna,Cranmer:2015bka,Andreassen:2019nnm,Rogozhnikov:2016bdp}
\\\textit{Morphing simulations to look like data is a form of domain adaptation.}
\item \textbf{BSM}~\cite{Heimel:2024drk,Maselek:2024qyp,Yang:2024bqw,Florez:2024lrr,Saito:2024fmr,Schofbeck:2024zjo,Hammad:2024hhm,Ahmed:2024uaz,Choudhury:2024mox,Baruah:2024gwy,Ahmed:2024oxg,Catena:2024fjn,Bhattacharya:2024sxl,vanBeekveld:2024cby,Barman:2024xlc,Arganda:2023qni,Franz:2023gic,Mandal:2023mck,Chhibra:2023tyf,vanBeekveld:2023ney,Dennis:2023kfe,Anisha:2023xmh,Castro:2022zpq,GomezAmbrosio:2022mpm,deSouza:2022uhk,Romao:2020ojy,Brehmer:2019xox,Brehmer:2018hga,Brehmer:2018eca,Brehmer:2018kdj,Hollingsworth:2020kjg,Andreassen:2020nkr}
\item \textbf{BSM}~\cite{Heimel:2024drk,Maselek:2024qyp,Yang:2024bqw,Florez:2024lrr,Saito:2024fmr,Schofbeck:2024zjo,Hammad:2024hhm,Ahmed:2024uaz,Choudhury:2024mox,Baruah:2024gwy,Ahmed:2024oxg,Catena:2024fjn,Bhattacharya:2024sxl,vanBeekveld:2024cby,Barman:2024xlc,Romao:2024gjx,Arganda:2023qni,Franz:2023gic,Mandal:2023mck,Chhibra:2023tyf,vanBeekveld:2023ney,Dennis:2023kfe,Anisha:2023xmh,Castro:2022zpq,GomezAmbrosio:2022mpm,deSouza:2022uhk,Romao:2020ojy,Brehmer:2019xox,Brehmer:2018hga,Brehmer:2018eca,Brehmer:2018kdj,Hollingsworth:2020kjg,Andreassen:2020nkr}
\\\textit{This category is for parameter estimation when the parameter is the signal strength of new physics.}
\item \textbf{Differentiable Simulation}~\cite{Heller:2024onk,Chung:2024vfg,Heimel:2024wph,BarhamAlzas:2024ggt,Smith:2023ssh,Aehle:2023wwi,Kagan:2023gxz,Shenoy:2023ros,Napolitano:2023jhg,Lei:2022dvn,Nachman:2022jbj,MODE:2022znx,Heinrich:2022xfa}
\\\textit{Coding up a simulation using a differentiable programming language like TensorFlow, PyTorch, or JAX.}
Expand Down
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -1932,6 +1932,7 @@ This review was built with the help of the HEP-ML community, the [INSPIRE REST A
* [Higgs couplings in SMEFT via Zh production at the HL-LHC](https://arxiv.org/abs/2403.03001) (2024)
* [The impact of CP-violating phases on DM observables in the cpMSSM](https://arxiv.org/abs/2402.08814) (2024)
* [Current status of the light neutralino thermal dark matter in the phenomenological MSSM](https://arxiv.org/abs/2402.07991) (2024)
* [Combining evolutionary strategies and novelty detection to go beyond the alignment limit of the Z3 3HDM](https://arxiv.org/abs/2402.07661) [[DOI](https://doi.org/10.1103/PhysRevD.109.095040)] (2024)
* [LHC Study of Third-Generation Scalar Leptoquarks with Machine-Learned Likelihoods](https://arxiv.org/abs/2309.05407) [[DOI](https://doi.org/10.1103/PhysRevD.109.055032)] (2023)
* [Tip of the Red Giant Branch Bounds on the Neutrino Magnetic Dipole Moment Revisited](https://arxiv.org/abs/2307.13050) (2023)
* [Pinning down the leptophobic $Z^\prime$ in leptonic final states with Deep Learning](https://arxiv.org/abs/2307.01118) [[DOI](https://doi.org/10.1016/j.physletb.2023.138417)] (2023)
Expand Down
1 change: 1 addition & 0 deletions docs/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -2134,6 +2134,7 @@ const expandElements = shouldExpand => {
* [Higgs couplings in SMEFT via Zh production at the HL-LHC](https://arxiv.org/abs/2403.03001) (2024)
* [The impact of CP-violating phases on DM observables in the cpMSSM](https://arxiv.org/abs/2402.08814) (2024)
* [Current status of the light neutralino thermal dark matter in the phenomenological MSSM](https://arxiv.org/abs/2402.07991) (2024)
* [Combining evolutionary strategies and novelty detection to go beyond the alignment limit of the Z3 3HDM](https://arxiv.org/abs/2402.07661) [[DOI](https://doi.org/10.1103/PhysRevD.109.095040)] (2024)
* [LHC Study of Third-Generation Scalar Leptoquarks with Machine-Learned Likelihoods](https://arxiv.org/abs/2309.05407) [[DOI](https://doi.org/10.1103/PhysRevD.109.055032)] (2023)
* [Tip of the Red Giant Branch Bounds on the Neutrino Magnetic Dipole Moment Revisited](https://arxiv.org/abs/2307.13050) (2023)
* [Pinning down the leptophobic $Z^\prime$ in leptonic final states with Deep Learning](https://arxiv.org/abs/2307.01118) [[DOI](https://doi.org/10.1016/j.physletb.2023.138417)] (2023)
Expand Down