Skip to content

Commit

Permalink
feat: implement FaceLandmarker (#992)
Browse files Browse the repository at this point in the history
* feat: import FaceLandmarker protos

* feat: implement FaceLandmarker
  • Loading branch information
homuler authored Aug 12, 2023
1 parent 7252d53 commit 8f79eee
Show file tree
Hide file tree
Showing 15 changed files with 533 additions and 1 deletion.

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Original file line number Diff line number Diff line change
@@ -0,0 +1,215 @@
// Copyright (c) 2023 homuler
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT.

using System.Collections.Generic;

namespace Mediapipe.Tasks.Vision.FaceLandmarker
{
public sealed class FaceLandmarker : Core.BaseVisionTaskApi
{
private const string _IMAGE_IN_STREAM_NAME = "image_in";
private const string _IMAGE_OUT_STREAM_NAME = "image_out";
private const string _IMAGE_TAG = "IMAGE";
private const string _NORM_RECT_STREAM_NAME = "norm_rect_in";
private const string _NORM_RECT_TAG = "NORM_RECT";
private const string _NORM_LANDMARKS_STREAM_NAME = "norm_landmarks";
private const string _NORM_LANDMARKS_TAG = "NORM_LANDMARKS";
private const string _BLENDSHAPES_STREAM_NAME = "blendshapes";
private const string _BLENDSHAPES_TAG = "BLENDSHAPES";
private const string _FACE_GEOMETRY_STREAM_NAME = "face_geometry";
private const string _FACE_GEOMETRY_TAG = "FACE_GEOMETRY";
private const string _TASK_GRAPH_NAME = "mediapipe.tasks.vision.face_landmarker.FaceLandmarkerGraph";

private const int _MICRO_SECONDS_PER_MILLISECOND = 1000;

#pragma warning disable IDE0052 // Remove unread private members
/// <remarks>
/// keep reference to prevent GC from collecting the callback instance.
/// </remarks>
private readonly Tasks.Core.TaskRunner.PacketsCallback _packetCallback;
#pragma warning restore IDE0052

private FaceLandmarker(
CalculatorGraphConfig graphConfig,
Core.RunningMode runningMode,
Tasks.Core.TaskRunner.PacketsCallback packetCallback) : base(graphConfig, runningMode, packetCallback)
{
_packetCallback = packetCallback;
}

/// <summary>
/// Creates an <see cref="FaceLandmarker" /> object from a TensorFlow Lite model and the default <see cref="FaceLandmarkerOptions" />.
///
/// Note that the created <see cref="FaceLandmarker" /> instance is in image mode,
/// for detecting face landmarks on single image inputs.
/// </summary>
/// <param name="modelPath">Path to the model.</param>
/// <returns>
/// <see cref="FaceLandmarker" /> object that's created from the model and the default <see cref="FaceLandmarkerOptions" />.
/// </returns>
public static FaceLandmarker CreateFromModelPath(string modelPath)
{
var baseOptions = new Tasks.Core.BaseOptions(modelAssetPath: modelPath);
var options = new FaceLandmarkerOptions(baseOptions, runningMode: Core.RunningMode.IMAGE);
return CreateFromOptions(options);
}

/// <summary>
/// Creates the <see cref="FaceLandmarker" /> object from <paramref name="FaceLandmarkerOptions" />.
/// </summary>
/// <param name="options">Options for the face landmarker task.</param>
/// <returns>
/// <see cref="FaceLandmarker" /> object that's created from <paramref name="options" />.
/// </returns>
public static FaceLandmarker CreateFromOptions(FaceLandmarkerOptions options)
{
var outputStreams = new List<string> {
string.Join(":", _NORM_LANDMARKS_TAG, _NORM_LANDMARKS_STREAM_NAME),
string.Join(":", _IMAGE_TAG, _IMAGE_OUT_STREAM_NAME),
};
if (options.outputFaceBlendshapes)
{
outputStreams.Add(string.Join(":", _BLENDSHAPES_TAG, _BLENDSHAPES_STREAM_NAME));
}
if (options.outputFaceTransformationMatrixes)
{
outputStreams.Add(string.Join(":", _FACE_GEOMETRY_TAG, _FACE_GEOMETRY_STREAM_NAME));
}
var taskInfo = new Tasks.Core.TaskInfo<FaceLandmarkerOptions>(
taskGraph: _TASK_GRAPH_NAME,
inputStreams: new List<string> {
string.Join(":", _IMAGE_TAG, _IMAGE_IN_STREAM_NAME),
string.Join(":", _NORM_RECT_TAG, _NORM_RECT_STREAM_NAME),
},
outputStreams: outputStreams,
taskOptions: options);

return new FaceLandmarker(
taskInfo.GenerateGraphConfig(options.runningMode == Core.RunningMode.LIVE_STREAM),
options.runningMode,
BuildPacketsCallback(options.resultCallback));
}

/// <summary>
/// Performs face landmarks detection on the provided MediaPipe Image.
///
/// Only use this method when the <see cref="FaceLandmarker" /> is created with the image running mode.
/// The image can be of any size with format RGB or RGBA.
/// </summary>
/// <param name="image">MediaPipe Image.</param>
/// <param name="imageProcessingOptions">Options for image processing.</param>
/// <returns>
/// A face landmarks detection results.
/// </returns>
public FaceLandmarkerResult Detect(Image image, Core.ImageProcessingOptions? imageProcessingOptions = null)
{
var normalizedRect = ConvertToNormalizedRect(imageProcessingOptions, image, roiAllowed: false);

var packetMap = new PacketMap();
packetMap.Emplace(_IMAGE_IN_STREAM_NAME, new ImagePacket(image));
packetMap.Emplace(_NORM_RECT_STREAM_NAME, new NormalizedRectPacket(normalizedRect));
var outputPackets = ProcessImageData(packetMap);

return BuildFaceLandmarkerResult(outputPackets);
}

/// <summary>
/// Performs face landmarks detection on the provided video frames.
///
/// Only use this method when the FaceLandmarker is created with the video
/// running mode. It's required to provide the video frame's timestamp (in
/// milliseconds) along with the video frame. The input timestamps should be
/// monotonically increasing for adjacent calls of this method.
/// </summary>
/// <returns>
/// The face landmarks detection results.
/// </returns>
public FaceLandmarkerResult DetectForVideo(Image image, int timestampMs, Core.ImageProcessingOptions? imageProcessingOptions = null)
{
var normalizedRect = ConvertToNormalizedRect(imageProcessingOptions, image, roiAllowed: false);

PacketMap outputPackets = null;
using (var timestamp = new Timestamp(timestampMs * _MICRO_SECONDS_PER_MILLISECOND))
{
var packetMap = new PacketMap();
packetMap.Emplace(_IMAGE_IN_STREAM_NAME, new ImagePacket(image, timestamp));
packetMap.Emplace(_NORM_RECT_STREAM_NAME, new NormalizedRectPacket(normalizedRect).At(timestamp));
outputPackets = ProcessVideoData(packetMap);
}

return BuildFaceLandmarkerResult(outputPackets);
}

/// <summary>
/// Sends live image data to perform face landmarks detection.
///
/// Only use this method when the FaceLandmarker is created with the live stream
/// running mode. The input timestamps should be monotonically increasing for
/// adjacent calls of this method. This method will return immediately after the
/// input image is accepted. The results will be available via the
/// <see cref="FaceLandmarkerOptions.ResultCallback" /> provided in the <see cref="FaceLandmarkerOptions" />.
/// The <see cref="DetectAsync" /> method is designed to process live stream data such as camera
/// input. To lower the overall latency, face landmarker may drop the input
/// images if needed. In other words, it's not guaranteed to have output per
/// input image.
public void DetectAsync(Image image, int timestampMs, Core.ImageProcessingOptions? imageProcessingOptions = null)
{
var normalizedRect = ConvertToNormalizedRect(imageProcessingOptions, image, roiAllowed: false);

using (var timestamp = new Timestamp(timestampMs * _MICRO_SECONDS_PER_MILLISECOND))
{
var packetMap = new PacketMap();
packetMap.Emplace(_IMAGE_IN_STREAM_NAME, new ImagePacket(image, timestamp));
packetMap.Emplace(_NORM_RECT_STREAM_NAME, new NormalizedRectPacket(normalizedRect).At(timestamp));

SendLiveStreamData(packetMap);
}
}

private static Tasks.Core.TaskRunner.PacketsCallback BuildPacketsCallback(FaceLandmarkerOptions.ResultCallback resultCallback)
{
if (resultCallback == null)
{
return null;
}

return (PacketMap outputPackets) =>
{
var outImagePacket = outputPackets.At<ImagePacket, Image>(_IMAGE_OUT_STREAM_NAME);
if (outImagePacket == null || outImagePacket.IsEmpty())
{
return;
}
var image = outImagePacket.Get();
var faceLandmarkerResult = BuildFaceLandmarkerResult(outputPackets);
var timestamp = outImagePacket.Timestamp().Microseconds() / _MICRO_SECONDS_PER_MILLISECOND;
resultCallback(faceLandmarkerResult, image, (int)timestamp);
};
}

private static FaceLandmarkerResult BuildFaceLandmarkerResult(PacketMap outputPackets)
{
var faceLandmarksProtoListPacket =
outputPackets.At<NormalizedLandmarkListVectorPacket, List<NormalizedLandmarkList>>(_NORM_LANDMARKS_STREAM_NAME);
if (faceLandmarksProtoListPacket.IsEmpty())
{
return FaceLandmarkerResult.Empty();
}

var faceLandmarksProtoList = faceLandmarksProtoListPacket.Get();

var faceBlendshapesProtoList =
outputPackets.At<ClassificationListVectorPacket, List<ClassificationList>>(_BLENDSHAPES_STREAM_NAME)?.Get();

var faceTransformationMatrixesProtoList =
outputPackets.At<FaceGeometry.FaceGeometryVectorPacket, List<FaceGeometry.Proto.FaceGeometry>>(_FACE_GEOMETRY_STREAM_NAME)?.Get();

return FaceLandmarkerResult.CreateFrom(faceLandmarksProtoList, faceBlendshapesProtoList, faceTransformationMatrixesProtoList);
}
}
}

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
// Copyright (c) 2023 homuler
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT.

namespace Mediapipe.Tasks.Vision.FaceLandmarker
{
public sealed class FaceLandmarkerOptions : Tasks.Core.ITaskOptions
{
/// <param name="faceLandmarksResult">
/// The face landmarks detection results.
/// </param>
/// <param name="image">
/// The input image that the face landmarker runs on.
/// </param>
/// <param name="timestampMs">
/// The input timestamp in milliseconds.
/// </param>
public delegate void ResultCallback(FaceLandmarkerResult faceLandmarksResult, Image image, int timestampMs);

public Tasks.Core.BaseOptions baseOptions { get; }
public Core.RunningMode runningMode { get; }
public int numFaces { get; }
public float minFaceDetectionConfidence { get; }
public float minFacePresenceConfidence { get; }
public float minTrackingConfidence { get; }
public bool outputFaceBlendshapes { get; }
public bool outputFaceTransformationMatrixes { get; }
public ResultCallback resultCallback { get; }

public FaceLandmarkerOptions(
Tasks.Core.BaseOptions baseOptions,
Core.RunningMode runningMode = Core.RunningMode.IMAGE,
int numFaces = 1,
float minFaceDetectionConfidence = 0.5f,
float minFacePresenceConfidence = 0.5f,
float minTrackingConfidence = 0.5f,
bool outputFaceBlendshapes = false,
bool outputFaceTransformationMatrixes = false,
ResultCallback resultCallback = null)
{
this.baseOptions = baseOptions;
this.runningMode = runningMode;
this.numFaces = numFaces;
this.minFaceDetectionConfidence = minFaceDetectionConfidence;
this.minFacePresenceConfidence = minFacePresenceConfidence;
this.minTrackingConfidence = minTrackingConfidence;
this.outputFaceBlendshapes = outputFaceBlendshapes;
this.outputFaceTransformationMatrixes = outputFaceTransformationMatrixes;
this.resultCallback = resultCallback;
}

internal Proto.FaceLandmarkerGraphOptions ToProto()
{
var baseOptionsProto = baseOptions.ToProto();
baseOptionsProto.UseStreamMode = runningMode != Core.RunningMode.IMAGE;

return new Proto.FaceLandmarkerGraphOptions
{
BaseOptions = baseOptionsProto,
FaceDetectorGraphOptions = new FaceDetector.Proto.FaceDetectorGraphOptions
{
MinDetectionConfidence = minFaceDetectionConfidence,
NumFaces = numFaces,
},
FaceLandmarksDetectorGraphOptions = new Proto.FaceLandmarksDetectorGraphOptions
{
MinDetectionConfidence = minFacePresenceConfidence,
},
MinTrackingConfidence = minTrackingConfidence,
};
}

CalculatorOptions Tasks.Core.ITaskOptions.ToCalculatorOptions()
{
var options = new CalculatorOptions();
options.SetExtension(Proto.FaceLandmarkerGraphOptions.Extensions.Ext, ToProto());
return options;
}
}
}

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Loading

0 comments on commit 8f79eee

Please sign in to comment.