This is an exploration of interpretability in Convolutional Neural Networks
$ git clone https://github.com/hnaik/iconn.git
$ cd iconn
$ pipenv install --python 3.7
$ pipenv shell
$ PYTHONPATH=. apps/2d-shapes.py \
--arch interpretable \
--device cuda \
--input-dir </path/to/data-dir> \
--output-dir </path/to/output-dir> \
--epochs 1 \
--template-norm [original|l1|l2] \
--template-cache-dir </path/to/cache-dir>