Skip to content

Commit

Permalink
add pytorch implementations for jagged operations
Browse files Browse the repository at this point in the history
Reviewed By: hanli0612

Differential Revision: D66155983
  • Loading branch information
zhaozhul authored and facebook-github-bot committed Nov 20, 2024
1 parent 77d8b94 commit 36d82d0
Showing 1 changed file with 196 additions and 0 deletions.
196 changes: 196 additions & 0 deletions generative_recommenders/ops/pytorch/jagged.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,196 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#!/usr/bin/env python3

# pyre-strict

from typing import Tuple

import torch


def pytorch_jagged_dense_bmm(
max_seq_len: int,
seq_offsets: torch.Tensor,
jagged: torch.Tensor,
dense: torch.Tensor,
) -> torch.Tensor:
padded_jagged = torch.ops.fbgemm.jagged_to_padded_dense(
values=jagged,
offsets=[seq_offsets],
max_lengths=[max_seq_len],
padding_value=0.0,
)
bmm_out = torch.bmm(padded_jagged, dense)
jagged_bmm_out = torch.ops.fbgemm.dense_to_jagged(bmm_out, [seq_offsets])[0]

return jagged_bmm_out


def pytorch_jagged_dense_broadcast_add(
max_seq_len: int,
seq_offsets: torch.Tensor,
jagged: torch.Tensor,
dense: torch.Tensor,
) -> torch.Tensor:
padded_jagged = torch.ops.fbgemm.jagged_to_padded_dense(
values=jagged,
offsets=[seq_offsets],
max_lengths=[max_seq_len],
padding_value=0.0,
)
out = padded_jagged + dense.unsqueeze(1)
jagged_out = torch.ops.fbgemm.dense_to_jagged(out, [seq_offsets])[0]
return jagged_out


def pytorch_jagged_dense_bmm_broadcast_add(
max_seq_len: int,
seq_offsets: torch.Tensor,
jagged: torch.Tensor,
dense: torch.Tensor,
bias: torch.Tensor,
) -> torch.Tensor:
jagged = pytorch_jagged_dense_bmm(max_seq_len, seq_offsets, jagged, dense)
return pytorch_jagged_dense_broadcast_add(
max_seq_len=max_seq_len,
seq_offsets=seq_offsets,
jagged=jagged,
dense=bias,
)


@torch.fx.wrap
def _arange(len: int, device: torch.device) -> torch.Tensor:
return torch.arange(len, device=device)


def pytorch_concat_2D_dense_jagged(
jagged_max_seq_len: int,
jagged_offsets: torch.Tensor,
jagged_values: torch.Tensor,
dense_values: torch.Tensor,
) -> torch.Tensor:
B, dense_size, D = dense_values.size()
jagged_dense = torch.ops.fbgemm.jagged_to_padded_dense(
values=jagged_values,
offsets=[jagged_offsets],
max_lengths=[jagged_max_seq_len],
padding_value=0.0,
)
concatted_dense = torch.cat([dense_values, jagged_dense], dim=1)
concatted_offsets = (
dense_size * _arange(B + 1, device=jagged_offsets.device) + jagged_offsets
)
return torch.ops.fbgemm.dense_to_jagged(
concatted_dense,
[concatted_offsets],
)[0]


def pytorch_concat_2D_jagged_jagged(
max_seq_len_left: int,
offsets_left: torch.Tensor,
values_left: torch.Tensor,
max_seq_len_right: int,
offsets_right: torch.Tensor,
values_right: torch.Tensor,
n_prefix_from_right: int,
) -> torch.Tensor:
_, D = values_left.shape
max_seq_len = max_seq_len_left + max_seq_len_right
B = offsets_left.shape[0] - 1

lengths_a = offsets_left[1:] - offsets_left[:-1]
lengths_b = offsets_right[1:] - offsets_right[:-1]
dense_a = torch.ops.fbgemm.jagged_to_padded_dense(
values=values_left,
offsets=[offsets_left],
max_lengths=[max_seq_len_left],
padding_value=0.0,
)
dense_b = torch.ops.fbgemm.jagged_to_padded_dense(
values=values_right,
offsets=[offsets_right],
max_lengths=[max_seq_len_right],
padding_value=0.0,
)
dense_b_prefix, dense_b_suffix = torch.split(
dense_b, [n_prefix_from_right, max_seq_len_right - n_prefix_from_right], dim=1
)
dense = torch.cat([dense_b_prefix, dense_a, dense_b_suffix], dim=1)
mask = _arange(max_seq_len, device=offsets_left.device).expand(B, max_seq_len)
mask = torch.logical_or(
mask < lengths_a.view(B, 1) + n_prefix_from_right,
torch.logical_and(
mask >= max_seq_len_left + n_prefix_from_right,
mask < max_seq_len_left + lengths_b.view(B, 1),
),
)
return dense.view(-1, D)[mask.view(-1), :]


def pytorch_jagged_remove_first_or_last_1D(
values: torch.Tensor,
lengths: torch.Tensor,
offsets: torch.Tensor,
max_seq_len: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
values = values.view(-1, 1)
shrunk_lengths = lengths - 1
k_lengths = torch.stack([shrunk_lengths, torch.ones_like(lengths)], dim=1).view(-1)
q_lengths = torch.stack([torch.ones_like(lengths), shrunk_lengths], dim=1).view(-1)
all_indices = torch.arange(
start=0, end=q_lengths.numel(), device=values.device
).reshape(-1, 2)
q_indices, k_indices = all_indices[:, 1], all_indices[:, 0]
values_no_first, _ = torch.ops.fbgemm.jagged_index_select(
values, q_lengths, q_indices
)
values_no_last, _ = torch.ops.fbgemm.jagged_index_select(
values, k_lengths, k_indices
)
return values_no_first.squeeze(), values_no_last.squeeze()


def pytorch_replace_last_n_with_jagged(
max_seq_len_left: int,
offsets_left: torch.Tensor,
values_left: torch.Tensor,
offsets_right: torch.Tensor,
values_right: torch.Tensor,
) -> torch.Tensor:
B = offsets_left.shape[0] - 1
lengths_a = offsets_left[1:] - offsets_left[:-1]
lengths_b = offsets_right[1:] - offsets_right[:-1]
dense_a = torch.ops.fbgemm.jagged_to_padded_dense(
values=values_left,
offsets=[offsets_left],
max_lengths=[max_seq_len_left],
padding_value=0.0,
)
raw_mask = torch.arange(max_seq_len_left, device=offsets_left.device).expand(
B, max_seq_len_left
)
mask = torch.logical_and(
raw_mask >= (lengths_a - lengths_b).unsqueeze(1),
raw_mask < lengths_a.unsqueeze(1),
)
dense_a[mask] = values_right
jagged_a = torch.ops.fbgemm.dense_to_jagged(
dense_a,
[offsets_left],
)[0]
return jagged_a

0 comments on commit 36d82d0

Please sign in to comment.