-
Notifications
You must be signed in to change notification settings - Fork 144
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add pytorch implementations for jagged operations
Reviewed By: hanli0612 Differential Revision: D66155983
- Loading branch information
1 parent
77d8b94
commit 36d82d0
Showing
1 changed file
with
196 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,196 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
#!/usr/bin/env python3 | ||
|
||
# pyre-strict | ||
|
||
from typing import Tuple | ||
|
||
import torch | ||
|
||
|
||
def pytorch_jagged_dense_bmm( | ||
max_seq_len: int, | ||
seq_offsets: torch.Tensor, | ||
jagged: torch.Tensor, | ||
dense: torch.Tensor, | ||
) -> torch.Tensor: | ||
padded_jagged = torch.ops.fbgemm.jagged_to_padded_dense( | ||
values=jagged, | ||
offsets=[seq_offsets], | ||
max_lengths=[max_seq_len], | ||
padding_value=0.0, | ||
) | ||
bmm_out = torch.bmm(padded_jagged, dense) | ||
jagged_bmm_out = torch.ops.fbgemm.dense_to_jagged(bmm_out, [seq_offsets])[0] | ||
|
||
return jagged_bmm_out | ||
|
||
|
||
def pytorch_jagged_dense_broadcast_add( | ||
max_seq_len: int, | ||
seq_offsets: torch.Tensor, | ||
jagged: torch.Tensor, | ||
dense: torch.Tensor, | ||
) -> torch.Tensor: | ||
padded_jagged = torch.ops.fbgemm.jagged_to_padded_dense( | ||
values=jagged, | ||
offsets=[seq_offsets], | ||
max_lengths=[max_seq_len], | ||
padding_value=0.0, | ||
) | ||
out = padded_jagged + dense.unsqueeze(1) | ||
jagged_out = torch.ops.fbgemm.dense_to_jagged(out, [seq_offsets])[0] | ||
return jagged_out | ||
|
||
|
||
def pytorch_jagged_dense_bmm_broadcast_add( | ||
max_seq_len: int, | ||
seq_offsets: torch.Tensor, | ||
jagged: torch.Tensor, | ||
dense: torch.Tensor, | ||
bias: torch.Tensor, | ||
) -> torch.Tensor: | ||
jagged = pytorch_jagged_dense_bmm(max_seq_len, seq_offsets, jagged, dense) | ||
return pytorch_jagged_dense_broadcast_add( | ||
max_seq_len=max_seq_len, | ||
seq_offsets=seq_offsets, | ||
jagged=jagged, | ||
dense=bias, | ||
) | ||
|
||
|
||
@torch.fx.wrap | ||
def _arange(len: int, device: torch.device) -> torch.Tensor: | ||
return torch.arange(len, device=device) | ||
|
||
|
||
def pytorch_concat_2D_dense_jagged( | ||
jagged_max_seq_len: int, | ||
jagged_offsets: torch.Tensor, | ||
jagged_values: torch.Tensor, | ||
dense_values: torch.Tensor, | ||
) -> torch.Tensor: | ||
B, dense_size, D = dense_values.size() | ||
jagged_dense = torch.ops.fbgemm.jagged_to_padded_dense( | ||
values=jagged_values, | ||
offsets=[jagged_offsets], | ||
max_lengths=[jagged_max_seq_len], | ||
padding_value=0.0, | ||
) | ||
concatted_dense = torch.cat([dense_values, jagged_dense], dim=1) | ||
concatted_offsets = ( | ||
dense_size * _arange(B + 1, device=jagged_offsets.device) + jagged_offsets | ||
) | ||
return torch.ops.fbgemm.dense_to_jagged( | ||
concatted_dense, | ||
[concatted_offsets], | ||
)[0] | ||
|
||
|
||
def pytorch_concat_2D_jagged_jagged( | ||
max_seq_len_left: int, | ||
offsets_left: torch.Tensor, | ||
values_left: torch.Tensor, | ||
max_seq_len_right: int, | ||
offsets_right: torch.Tensor, | ||
values_right: torch.Tensor, | ||
n_prefix_from_right: int, | ||
) -> torch.Tensor: | ||
_, D = values_left.shape | ||
max_seq_len = max_seq_len_left + max_seq_len_right | ||
B = offsets_left.shape[0] - 1 | ||
|
||
lengths_a = offsets_left[1:] - offsets_left[:-1] | ||
lengths_b = offsets_right[1:] - offsets_right[:-1] | ||
dense_a = torch.ops.fbgemm.jagged_to_padded_dense( | ||
values=values_left, | ||
offsets=[offsets_left], | ||
max_lengths=[max_seq_len_left], | ||
padding_value=0.0, | ||
) | ||
dense_b = torch.ops.fbgemm.jagged_to_padded_dense( | ||
values=values_right, | ||
offsets=[offsets_right], | ||
max_lengths=[max_seq_len_right], | ||
padding_value=0.0, | ||
) | ||
dense_b_prefix, dense_b_suffix = torch.split( | ||
dense_b, [n_prefix_from_right, max_seq_len_right - n_prefix_from_right], dim=1 | ||
) | ||
dense = torch.cat([dense_b_prefix, dense_a, dense_b_suffix], dim=1) | ||
mask = _arange(max_seq_len, device=offsets_left.device).expand(B, max_seq_len) | ||
mask = torch.logical_or( | ||
mask < lengths_a.view(B, 1) + n_prefix_from_right, | ||
torch.logical_and( | ||
mask >= max_seq_len_left + n_prefix_from_right, | ||
mask < max_seq_len_left + lengths_b.view(B, 1), | ||
), | ||
) | ||
return dense.view(-1, D)[mask.view(-1), :] | ||
|
||
|
||
def pytorch_jagged_remove_first_or_last_1D( | ||
values: torch.Tensor, | ||
lengths: torch.Tensor, | ||
offsets: torch.Tensor, | ||
max_seq_len: int, | ||
) -> Tuple[torch.Tensor, torch.Tensor]: | ||
values = values.view(-1, 1) | ||
shrunk_lengths = lengths - 1 | ||
k_lengths = torch.stack([shrunk_lengths, torch.ones_like(lengths)], dim=1).view(-1) | ||
q_lengths = torch.stack([torch.ones_like(lengths), shrunk_lengths], dim=1).view(-1) | ||
all_indices = torch.arange( | ||
start=0, end=q_lengths.numel(), device=values.device | ||
).reshape(-1, 2) | ||
q_indices, k_indices = all_indices[:, 1], all_indices[:, 0] | ||
values_no_first, _ = torch.ops.fbgemm.jagged_index_select( | ||
values, q_lengths, q_indices | ||
) | ||
values_no_last, _ = torch.ops.fbgemm.jagged_index_select( | ||
values, k_lengths, k_indices | ||
) | ||
return values_no_first.squeeze(), values_no_last.squeeze() | ||
|
||
|
||
def pytorch_replace_last_n_with_jagged( | ||
max_seq_len_left: int, | ||
offsets_left: torch.Tensor, | ||
values_left: torch.Tensor, | ||
offsets_right: torch.Tensor, | ||
values_right: torch.Tensor, | ||
) -> torch.Tensor: | ||
B = offsets_left.shape[0] - 1 | ||
lengths_a = offsets_left[1:] - offsets_left[:-1] | ||
lengths_b = offsets_right[1:] - offsets_right[:-1] | ||
dense_a = torch.ops.fbgemm.jagged_to_padded_dense( | ||
values=values_left, | ||
offsets=[offsets_left], | ||
max_lengths=[max_seq_len_left], | ||
padding_value=0.0, | ||
) | ||
raw_mask = torch.arange(max_seq_len_left, device=offsets_left.device).expand( | ||
B, max_seq_len_left | ||
) | ||
mask = torch.logical_and( | ||
raw_mask >= (lengths_a - lengths_b).unsqueeze(1), | ||
raw_mask < lengths_a.unsqueeze(1), | ||
) | ||
dense_a[mask] = values_right | ||
jagged_a = torch.ops.fbgemm.dense_to_jagged( | ||
dense_a, | ||
[offsets_left], | ||
)[0] | ||
return jagged_a |