Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add municipality info #258

Merged
merged 5 commits into from
Sep 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@

**Under development**

- feat: add municipality information to households and activities
- chore: update to `eqasim-java` commit `ece4932`
- feat: vehicles and vehicle types are now always generated
- feat: read vehicles data from zip files
Expand Down
69 changes: 40 additions & 29 deletions synthesis/output.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,23 +62,6 @@ def execute(context):
output_prefix = context.config("output_prefix")
output_formats = context.config("output_formats")

# Prepare households
df_households = context.stage("synthesis.population.enriched").rename(
columns = { "household_income": "income" }
).drop_duplicates("household_id")

df_households = df_households[[
"household_id",
"car_availability", "bike_availability",
"number_of_vehicles", "number_of_bikes",
"income",
"census_household_id"
]]
if "csv" in output_formats:
df_households.to_csv("%s/%shouseholds.csv" % (output_path, output_prefix), sep = ";", index = None, lineterminator = "\n")
if "parquet" in output_formats:
df_households.to_parquet("%s/%shouseholds.parquet" % (output_path, output_prefix))

# Prepare persons
df_persons = context.stage("synthesis.population.enriched").rename(
columns = { "has_license": "has_driving_license" }
Expand Down Expand Up @@ -106,9 +89,29 @@ def execute(context):
df_activities["preceding_trip_index"] = df_activities["following_trip_index"].shift(1)
df_activities.loc[df_activities["is_first"], "preceding_trip_index"] = -1
df_activities["preceding_trip_index"] = df_activities["preceding_trip_index"].astype(int)
# Prepare spatial data sets
df_locations = context.stage("synthesis.population.spatial.locations")[[
"person_id", "iris_id", "commune_id","departement_id","region_id","activity_index", "geometry"
]]

df_activities = pd.merge(df_activities, df_locations[[
"person_id", "iris_id", "commune_id","departement_id","region_id","activity_index", "geometry"
]], how = "left", on = ["person_id", "activity_index"])

# Prepare spatial activities
df_spatial = gpd.GeoDataFrame(df_activities[[
"person_id", "household_id", "activity_index",
"iris_id", "commune_id","departement_id","region_id",
"preceding_trip_index", "following_trip_index",
"purpose", "start_time", "end_time",
"is_first", "is_last", "geometry"
]], crs = df_locations.crs)
df_spatial = df_spatial.astype({'purpose': 'str', "departement_id": 'str'})

# Write activities
df_activities = df_activities[[
"person_id", "household_id", "activity_index",
"iris_id", "commune_id","departement_id","region_id",
"preceding_trip_index", "following_trip_index",
"purpose", "start_time", "end_time",
"is_first", "is_last"
Expand All @@ -119,6 +122,25 @@ def execute(context):
if "parquet" in output_formats:
df_activities.to_parquet("%s/%sactivities.parquet" % (output_path, output_prefix))

# Prepare households
df_households = context.stage("synthesis.population.enriched").rename(
columns = { "household_income": "income" }
).drop_duplicates("household_id")

df_households = pd.merge(df_households,df_activities[df_activities["purpose"] == "home"][["household_id",
"iris_id", "commune_id","departement_id","region_id"]].drop_duplicates("household_id"),how="left")
df_households = df_households[[
"household_id","iris_id", "commune_id", "departement_id","region_id",
"car_availability", "bike_availability",
"number_of_vehicles", "number_of_bikes",
"income",
"census_household_id"
]]
if "csv" in output_formats:
df_households.to_csv("%s/%shouseholds.csv" % (output_path, output_prefix), sep = ";", index = None, lineterminator = "\n")
if "parquet" in output_formats:
df_households.to_parquet("%s/%shouseholds.parquet" % (output_path, output_prefix))

# Prepare trips
df_trips = context.stage("synthesis.population.trips").rename(
columns = {
Expand Down Expand Up @@ -170,18 +192,7 @@ def execute(context):
df_vehicle_types.to_parquet("%s/%svehicle_types.parquet" % (output_path, output_prefix))
df_vehicles.to_parquet("%s/%svehicles.parquet" % (output_path, output_prefix))

# Prepare spatial data sets
df_locations = context.stage("synthesis.population.spatial.locations")[[
"person_id", "activity_index", "geometry"
]]

df_activities = pd.merge(df_activities, df_locations[[
"person_id", "activity_index", "geometry"
]], how = "left", on = ["person_id", "activity_index"])

# Write spatial activities
df_spatial = gpd.GeoDataFrame(df_activities, crs = df_locations.crs)
df_spatial["purpose"] = df_spatial["purpose"].astype(str)
if "gpkg" in output_formats:
path = "%s/%sactivities.gpkg" % (output_path, output_prefix)
df_spatial.to_file(path, driver = "GPKG")
Expand All @@ -194,7 +205,7 @@ def execute(context):
df_spatial_homes = df_spatial[
df_spatial["purpose"] == "home"
].drop_duplicates("household_id")[[
"household_id", "geometry"
"household_id","iris_id", "commune_id","departement_id","region_id", "geometry"
]]
if "gpkg" in output_formats:
path = "%s/%shomes.gpkg" % (output_path, output_prefix)
Expand Down
7 changes: 7 additions & 0 deletions synthesis/population/spatial/locations.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@ def configure(context):

context.stage("synthesis.population.activities")
context.stage("synthesis.population.sampled")
context.stage("data.spatial.iris")

def execute(context):
df_home = context.stage("synthesis.population.spatial.home.locations")
Expand Down Expand Up @@ -57,4 +58,10 @@ def execute(context):
assert not df_locations["geometry"].isna().any()
df_locations = gpd.GeoDataFrame(df_locations, crs = df_home.crs)

# add municipalities
df_iris = context.stage("data.spatial.iris")
df_iris = gpd.GeoDataFrame(df_iris, crs = df_home.crs)

df_locations = gpd.sjoin(df_locations,df_iris,how="left")

return df_locations
8 changes: 4 additions & 4 deletions tests/test_determinism.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,18 +68,18 @@ def _test_determinism(index, data_path, tmpdir):
synpp.run(stages, config, working_directory = cache_path)

REFERENCE_CSV_HASHES = {
"ile_de_france_activities.csv": "e520003e1876a9542ff1a955a6efcfdc",
"ile_de_france_households.csv": "709ce7ded8a2487e6691d4fb3374754b",
"ile_de_france_activities.csv": "53c44fb4026d2037729ee8ff1c8fb93f",
"ile_de_france_households.csv": "ca2a29ef13467326f937638f1ff8be1a",
"ile_de_france_persons.csv": "ddbe9b418c915b14e888b54efbdf9b1e",
"ile_de_france_trips.csv": "6c5f3427e41e683da768eeb53796a806",
"ile_de_france_vehicle_types.csv": "00bee1ea6d7bc9af43ae6c7101dd75da",
"ile_de_france_vehicles.csv": "3567b0f29e51d521b13d91c82c77cecb",
}

REFERENCE_GPKG_HASHES = {
"ile_de_france_activities.gpkg": "9cf9a5fd8927c709927f7a940f86efbf",
"ile_de_france_activities.gpkg": "884eec1fd0c29904284eb4362ff89be1",
"ile_de_france_commutes.gpkg": "5a4180390a69349cc655c07c5671e8d3",
"ile_de_france_homes.gpkg": "033d1aa7a5350579cbd5e8213b9736f2",
"ile_de_france_homes.gpkg": "a85e973f0e2f51031cd60170d351845e",
"ile_de_france_trips.gpkg": "d0aec4033cfc184bf1b91ae13a537ef8",
}

Expand Down
Loading