This repo contains the implementation of Learning of Efficient Stable Robot Grasping Approach Using Transformer-based Control Policy (ICIEA 2024 Best Paper Finalist) by En Yen Puang, Zechen Li, Chee Meng Chew, Shan Luo, Yan Wu.
Code adopted from source.
-
Clone the project:
git clone [email protected]:enyen/TactileSimulation.git
-
Clone the submodule:
mkdir -p externals/DiffHand git clone https://github.com/eanswer/DiffHand.git externals/DiffHand
-
Install CMake >= 3.1.0
-
Create conda environment
conda create -n tactile_sim python=3.9 conda activate tactile_sim pip install torch torchvision scikit-learn opencv-python einops stable_baselines3 tensorboard scipy pyyaml tqdm rich matplotlib pybind11 math3d=3.4.1 git+https://github.com/enyen/python-urx
-
Install
DiffRedMax
sudo apt-get install freeglut3-dev libglfw3-dev libxinerama-dev livxcursor-dev libxi-dev libxxf86vm-dev cd externals/DiffHand/core python setup.py install
Training in simulation:
cd examples/UnstableGraspExp
python train_sb3.py
Testing in simulation using model saved in ug_datetime:
python train_sb3.py ./storage/ug_datetime.zip vis_mode
vis_mode can be either:
- 'None' -> no visualization, just statistic
- 'show' -> visualize every steps
- 'record' -> produce a video of the whole episode
Visualize training progress using tensorboard:
tensorboard --logdir log
Getting normalization stats:
# cd bash
from unstable_grasp_env import UnstableGraspEnv
env = UnstableGraspEnv()
env.data_stat()
# update self.tactile_means and self.tactile_stds manually inside __init__.
Build marker flow library (adopted from source).
cd examples/UnstableGraspExp/marker_flow
make
Test marker flow
# cd examples/UnstableGraspExp
from marker_flow.marker_flow import MarkerFlow
mf = MarkerFlow()
# ... follow through to select camera id
mf._run(debug=True, collect=False)
# ... view marker flow visualization, ctrl-c to stop
Collect sensor means and stds:
cd examples/UnstableGraspExp
python test_ur5.py
Actual testing:
python test_ur5.py ./storage/ug_datetime
Please cite our paper if you use this code.
@misc{puang2024learningstablerobotgrasping,
title={Learning Stable Robot Grasping with Transformer-based Tactile Control Policies},
author={En Yen Puang and Zechen Li and Chee Meng Chew and Shan Luo and Yan Wu},
year={2024},
eprint={2407.21172},
archivePrefix={arXiv},
primaryClass={cs.RO},
url={https://arxiv.org/abs/2407.21172},
}