Skip to content

Commit

Permalink
Add row_sums() (#552)
Browse files Browse the repository at this point in the history
* Draft `row_sums()` as complement to `row_means()`

* version
  • Loading branch information
strengejacke authored Oct 11, 2024
1 parent 5ce207b commit 213b9d5
Show file tree
Hide file tree
Showing 6 changed files with 151 additions and 63 deletions.
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Type: Package
Package: datawizard
Title: Easy Data Wrangling and Statistical Transformations
Version: 0.13.0.6
Version: 0.13.0.7
Authors@R: c(
person("Indrajeet", "Patil", , "[email protected]", role = "aut",
comment = c(ORCID = "0000-0003-1995-6531")),
Expand Down
1 change: 1 addition & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -298,6 +298,7 @@ export(reverse)
export(reverse_scale)
export(row_count)
export(row_means)
export(row_sums)
export(row_to_colnames)
export(rowid_as_column)
export(rownames_as_column)
Expand Down
3 changes: 3 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,9 @@ CHANGES
variables, can now also be a character vector with quoted variable names,
including a colon to indicate a range of several variables (e.g. `"cyl:gear"`).

* New function `row_sums()`, to calculate row sums (optionally with minimum
amount of valid values), as complement to `row_means()`.

* New function `row_count()`, to count specific values row-wise.

BUG FIXES
Expand Down
142 changes: 100 additions & 42 deletions R/row_means.R
Original file line number Diff line number Diff line change
@@ -1,37 +1,41 @@
#' @title Row means (optionally with minimum amount of valid values)
#' @title Row means or sums (optionally with minimum amount of valid values)
#' @name row_means
#' @description This function is similar to the SPSS `MEAN.n` function and computes
#' row means from a data frame or matrix if at least `min_valid` values of a row are
#' valid (and not `NA`).
#' @description This function is similar to the SPSS `MEAN.n` or `SUM.n`
#' function and computes row means or row sums from a data frame or matrix if at
#' least `min_valid` values of a row are valid (and not `NA`).
#'
#' @param data A data frame with at least two columns, where row means are applied.
#' @param data A data frame with at least two columns, where row means or row
#' sums are applied.
#' @param min_valid Optional, a numeric value of length 1. May either be
#' - a numeric value that indicates the amount of valid values per row to
#' calculate the row mean;
#' calculate the row mean or row sum;
#' - or a value between `0` and `1`, indicating a proportion of valid values per
#' row to calculate the row mean (see 'Details').
#' row to calculate the row mean or row sum (see 'Details').
#' - `NULL` (default), in which all cases are considered.
#'
#' If a row's sum of valid values is less than `min_valid`, `NA` will be returned.
#' @param digits Numeric value indicating the number of decimal places to be
#' used for rounding mean values. Negative values are allowed (see 'Details').
#' By default, `digits = NULL` and no rounding is used.
#' @param remove_na Logical, if `TRUE` (default), removes missing (`NA`) values
#' before calculating row means. Only applies if `min_valuid` is not specified.
#' before calculating row means or row sums. Only applies if `min_valid` is not
#' specified.
#' @param verbose Toggle warnings.
#' @inheritParams extract_column_names
#'
#' @return A vector with row means for those rows with at least `n` valid values.
#' @return A vector with row means (for `row_means()`) or row sums (for
#' `row_sums()`) for those rows with at least `n` valid values.
#'
#' @details Rounding to a negative number of `digits` means rounding to a power of
#' ten, for example `row_means(df, 3, digits = -2)` rounds to the nearest hundred.
#' For `min_valid`, if not `NULL`, `min_valid` must be a numeric value from `0`
#' to `ncol(data)`. If a row in the data frame has at least `min_valid`
#' non-missing values, the row mean is returned. If `min_valid` is a non-integer
#' value from 0 to 1, `min_valid` is considered to indicate the proportion of
#' required non-missing values per row. E.g., if `min_valid = 0.75`, a row must
#' have at least `ncol(data) * min_valid` non-missing values for the row mean
#' to be calculated. See 'Examples'.
#' @details Rounding to a negative number of `digits` means rounding to a power
#' of ten, for example `row_means(df, 3, digits = -2)` rounds to the nearest
#' hundred. For `min_valid`, if not `NULL`, `min_valid` must be a numeric value
#' from `0` to `ncol(data)`. If a row in the data frame has at least `min_valid`
#' non-missing values, the row mean or row sum is returned. If `min_valid` is a
#' non-integer value from 0 to 1, `min_valid` is considered to indicate the
#' proportion of required non-missing values per row. E.g., if
#' `min_valid = 0.75`, a row must have at least `ncol(data) * min_valid`
#' non-missing values for the row mean or row sum to be calculated. See
#' 'Examples'.
#'
#' @examples
#' dat <- data.frame(
Expand All @@ -49,6 +53,7 @@
#'
#' # needs at least 4 non-missing values per row
#' row_means(dat, min_valid = 4) # 1 valid return value
#' row_sums(dat, min_valid = 4) # 1 valid return value
#'
#' # needs at least 3 non-missing values per row
#' row_means(dat, min_valid = 3) # 2 valid return values
Expand All @@ -61,6 +66,7 @@
#'
#' # needs at least 50% of non-missing values per row
#' row_means(dat, min_valid = 0.5) # 3 valid return values
#' row_sums(dat, min_valid = 0.5)
#'
#' # needs at least 75% of non-missing values per row
#' row_means(dat, min_valid = 0.75) # 2 valid return values
Expand All @@ -84,34 +90,52 @@ row_means <- function(data,
verbose = verbose
)

if (is.null(select) || length(select) == 0) {
insight::format_error("No columns selected.")
}
# prepare data, sanity checks
data <- .prepare_row_data(data, select, min_valid, verbose)

data <- .coerce_to_dataframe(data[select])
# calculate row means
.row_sums_or_means(data, min_valid, digits, remove_na, fun = "mean")
}

# n must be a numeric, non-missing value
if (!is.null(min_valid) && (all(is.na(min_valid)) || !is.numeric(min_valid) || length(min_valid) > 1)) {
insight::format_error("`min_valid` must be a numeric value of length 1.")
}

# make sure we only have numeric values
numeric_columns <- vapply(data, is.numeric, TRUE)
if (!all(numeric_columns)) {
if (verbose) {
insight::format_alert("Only numeric columns are considered for calculation.")
}
data <- data[numeric_columns]
}
#' @rdname row_means
#' @export
row_sums <- function(data,
select = NULL,
exclude = NULL,
min_valid = NULL,
digits = NULL,
ignore_case = FALSE,
regex = FALSE,
remove_na = FALSE,
verbose = TRUE) {
# evaluate arguments
select <- .select_nse(select,
data,
exclude,
ignore_case = ignore_case,
regex = regex,
verbose = verbose
)

# prepare data, sanity checks
data <- .prepare_row_data(data, select, min_valid, verbose)

# calculate row sums
.row_sums_or_means(data, min_valid, digits, remove_na, fun = "sum")
}

# check if we have a data framme with at least two columns
if (ncol(data) < 2) {
insight::format_error("`data` must be a data frame with at least two numeric columns.")
}

# proceed here if min_valid is not NULL
# helper ------------------------

# calculate row means or sums
.row_sums_or_means <- function(data, min_valid, digits, remove_na, fun) {
if (is.null(min_valid)) {
out <- rowMeans(data, na.rm = remove_na)
# calculate row means or sums for complete data
out <- switch(fun,
mean = rowMeans(data, na.rm = remove_na),
rowSums(data, na.rm = remove_na)
)
} else {
# is 'min_valid' indicating a proportion?
decimals <- min_valid %% 1
Expand All @@ -124,9 +148,12 @@ row_means <- function(data,
insight::format_error("`min_valid` must be smaller or equal to number of columns in data frame.")
}

# row means
# row means or sums
to_na <- rowSums(is.na(data)) > ncol(data) - min_valid
out <- rowMeans(data, na.rm = TRUE)
out <- switch(fun,
mean = rowMeans(data, na.rm = TRUE),
rowSums(data, na.rm = TRUE)
)
out[to_na] <- NA
}

Expand All @@ -137,3 +164,34 @@ row_means <- function(data,

out
}


# check that data is in shape for row means or row sums
.prepare_row_data <- function(data, select, min_valid, verbose) {
if (is.null(select) || length(select) == 0) {
insight::format_error("No columns selected.")
}

data <- .coerce_to_dataframe(data[select])

# n must be a numeric, non-missing value
if (!is.null(min_valid) && (all(is.na(min_valid)) || !is.numeric(min_valid) || length(min_valid) > 1)) {
insight::format_error("`min_valid` must be a numeric value of length 1.")
}

# make sure we only have numeric values
numeric_columns <- vapply(data, is.numeric, TRUE)
if (!all(numeric_columns)) {
if (verbose) {
insight::format_alert("Only numeric columns are considered for calculation.")
}
data <- data[numeric_columns]
}

# check if we have a data framme with at least two columns
if (ncol(data) < 2) {
insight::format_error("`data` must be a data frame with at least two numeric columns.")
}

data
}
55 changes: 37 additions & 18 deletions man/row_means.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

11 changes: 9 additions & 2 deletions tests/testthat/test-row_means.R
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
test_that("row_means", {
test_that("row_means/sums", {
d_mn <- data.frame(
c1 = c(1, 2, NA, 4),
c2 = c(NA, 2, NA, 5),
Expand All @@ -14,14 +14,21 @@ test_that("row_means", {
expect_equal(row_means(d_mn, min_valid = 2, digits = 1), c(1.5, 2.8, NA, 5.7), tolerance = 1e-1)
expect_message(row_means(iris), regex = "Only numeric")
expect_equal(row_means(iris, verbose = FALSE), rowMeans(iris[, 1:4]), tolerance = 1e-3, ignore_attr = TRUE)
expect_equal(row_sums(d_mn, min_valid = 4), c(NA, 11, NA, NA), tolerance = 1e-3)
expect_equal(row_sums(d_mn, min_valid = 3), c(NA, 11, NA, 17), tolerance = 1e-3)
expect_message(row_sums(iris), regex = "Only numeric")
})

test_that("row_means, errors or messages", {
test_that("row_means/sums, errors or messages", {
data(iris)
expect_error(expect_warning(row_means(iris, select = "abc")), regex = "No columns")
expect_error(expect_warning(row_sums(iris, select = "abc")), regex = "No columns")
expect_error(row_means(iris[1], min_valid = 1), regex = "two numeric")
expect_error(row_means(iris, min_valid = 1:4), regex = "numeric value")
expect_error(row_means(iris, min_valid = "a"), regex = "numeric value")
expect_message(row_means(iris[1:3, ], min_valid = 3), regex = "Only numeric")
expect_silent(row_means(iris[1:3, ], min_valid = 3, verbose = FALSE))
expect_error(row_sums(iris[1], min_valid = 1), regex = "two numeric")
expect_message(row_sums(iris[1:3, ], min_valid = 3), regex = "Only numeric")
expect_silent(row_sums(iris[1:3, ], min_valid = 3, verbose = FALSE))
})

0 comments on commit 213b9d5

Please sign in to comment.