Skip to content

The VALIDATION ACCURACY is BEST on KAGGLE. Artificial Neural Network with a validation accuracy of 97.98 % and a precision of 95% was achieved from the data to learn (as a cellphone attached on the waist) to recognise the type of activity that the user is doing. The dataset's description goes like this: The sensor signals (accelerometer and gyro…

License

Notifications You must be signed in to change notification settings

deadskull7/Human-Activity-Recognition-with-Neural-Network-using-Gyroscopic-and-Accelerometer-variables

Repository files navigation

Human-Activity-Recognition-with-Neural-Network-using-Gyroscopic-and-Accelerometer-variables

Video dataset overview

Follow this link to see a video of the 6 activities recorded in the experiment with one of the participants:

Video of the experiment

[Watch video]

Details:

Artificial Neural Network with a validation accuracy of 97.98 % and a precision of 95% was achieved from the data to learn (as a cellphone attached on the waist) to recognise the type of activity that the user is doing. My work is inspired from guillaume-chevalier/LSTM-Human-Activity-Recognition but he used RNN-LSTM to recognize the activity whereas I used ANN for the same. And had achieved a better confusion matrix as well as the validation accuracy than the RNN-LSTM. Bidirectional LSTM on the other hand gave around 94 % but which is still less. The above VALIDATION ACCURACY is also best on KAGGLE. The approach might be little different.

The dataset's description goes like this:

The sensor signals (accelerometer and gyroscope) were pre-processed by applying noise filters and then sampled in fixed-width sliding windows of 2.56 sec and 50% overlap (128 readings/window). The sensor acceleration signal, which has gravitational and body motion components, was separated using a Butterworth low-pass filter into body acceleration and gravity. The gravitational force is assumed to have only low frequency components, therefore a filter with 0.3 Hz cutoff frequency was used.

That said, I will use the almost raw data: only the gravity effect has been filtered out of the accelerometer as a preprocessing step for another 3D feature as an input to help learning.

feature_distribution1.png feature_distribution2.png feature_distribution4.png Research_paper_implementation.png My_own_implementation accuracy loss

Attribute Information:

For each record in the dataset it is provided:

  • Triaxial acceleration from the accelerometer (total acceleration) and the estimated body acceleration.
  • Triaxial Angular velocity from the gyroscope.
  • A 561-feature vector with time and frequency domain variables.
  • Its activity label.
  • An identifier of the subject who carried out the experiment.

References

The dataset can be found on the UCI Machine Learning Repository.

About

The VALIDATION ACCURACY is BEST on KAGGLE. Artificial Neural Network with a validation accuracy of 97.98 % and a precision of 95% was achieved from the data to learn (as a cellphone attached on the waist) to recognise the type of activity that the user is doing. The dataset's description goes like this: The sensor signals (accelerometer and gyro…

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published