Skip to content

Commit

Permalink
regenerated docs
Browse files Browse the repository at this point in the history
  • Loading branch information
haesleinhuepf committed Sep 27, 2020
1 parent de827a2 commit 621c70f
Show file tree
Hide file tree
Showing 14 changed files with 156 additions and 12 deletions.
2 changes: 1 addition & 1 deletion dependingViaMaven.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ If you want to access CLIJ from your Java code, it is recommended to depend on C
<dependency>
<groupId>net.haesleinhuepf</groupId>
<artifactId>clij2_</artifactId>
<version>2.1.4.0</version>
<version>2.1.4.7</version>
</dependency>
```

Expand Down
4 changes: 2 additions & 2 deletions pom.xml
Original file line number Diff line number Diff line change
Expand Up @@ -8,13 +8,13 @@
<parent>
<groupId>net.haesleinhuepf</groupId>
<artifactId>clij-parent-pom</artifactId>
<version>2.1.4.0</version>
<version>2.1.4.7</version>
<relativePath />
</parent>

<groupId>net.haesleinhuepf</groupId>
<artifactId>clij2-docs</artifactId>
<version>2.1.4.0</version>
<version>2.1.4.7</version>

<name>clij-docs</name>
<description>clij2-docs contains CLIJ documentation and documentation generators.</description>
Expand Down
11 changes: 10 additions & 1 deletion reference.md
Original file line number Diff line number Diff line change
Expand Up @@ -118,6 +118,9 @@ Subtracts one binary image from another.
### <img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_clij2_logo.png" width="18" height="18"/><img src="images/mini_clijx_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_binaryUnion">binaryUnion</a>
Computes a binary image (containing pixel values 0 and 1) from two images X and Y by connecting pairs of pixels x and y with the binary union operator |.

### <img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_clijx_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_binaryWekaPixelClassifier">binaryWekaPixelClassifier (Experimental)</a>
Applies a pre-trained CLIJx-Weka model to a 2D image.

### <img src="images/mini_clij1_logo.png" width="18" height="18"/><img src="images/mini_clij2_logo.png" width="18" height="18"/><img src="images/mini_clijx_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_binaryXOr">binaryXOr</a>
Computes a binary image (containing pixel values 0 and 1) from two images X and Y by connecting pairs of pixels x and y with the binary operators AND &, OR | and NOT ! implementing the XOR operator.

Expand Down Expand Up @@ -469,6 +472,9 @@ Takes an image and assumes its grey values are integers. It builds up a grey-lev
### <img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_clij2_logo.png" width="18" height="18"/><img src="images/mini_empty_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_generateJaccardIndexMatrix">generateJaccardIndexMatrix</a>
Takes two labelmaps with n and m labels_2 and generates a (n+1)*(m+1) matrix where all labels_1 are set to 0 exept those where labels_2 overlap between the label maps.

### <img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_clijx_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_generateLabelFeatureImage">generateLabelFeatureImage (Experimental)</a>
Generates a feature image for Trainable Weka Segmentation.

### <img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_clij2_logo.png" width="18" height="18"/><img src="images/mini_empty_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_generateParametricImage">generateParametricImage</a>
Take a labelmap and a vector of values to replace label 1 with the 1st value in the vector.

Expand Down Expand Up @@ -542,7 +548,7 @@ Determines if two images A and B greater or equal pixel wise.
Determines if two images A and B greater or equal pixel wise.

### <img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_clijx_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_greyLevelAtttributeFiltering">greyLevelAtttributeFiltering (Experimental)</a>
Inspired by Grayscale attribute filtering from MorpholibJ library by David Legland & Ignacio Arganda-Carreras. This plugin will remove components in a grayscale image based on user-specified area (for 2D: pixels) or volume (3D: voxels). For each gray level specified in the number of bins, binary images will be generated, followed by exclusion of objects (labels) below a minimum pixel count. All the binary images for each gray level are combined to form the final image. The output is a grayscale image, where bright objects below pixel count are removed. It is recommended that low values be used for number of bins, especially for large 3D images, or it may take long time.
Inspired by Grayscale attribute filtering from MorpholibJ library by David Legland & Ignacio Arganda-Carreras.

<a name="H"></a>

Expand Down Expand Up @@ -1396,6 +1402,9 @@ Takes a binary image and dilates the regions using a octagon shape until they to
### <img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_clij2_logo.png" width="18" height="18"/><img src="images/mini_clijx_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_watershed">watershed</a>
Apply a binary watershed to a binary image and introduces black pixels between objects.

### <img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_clijx_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_wekaLabelClassifier">wekaLabelClassifier (Experimental)</a>
Applies a pre-trained CLIJx-Weka model to an image and a corresponding label map.

### <img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_clijx_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_writeVTKLineListToDisc">writeVTKLineListToDisc (Experimental)</a>
Takes a point list image representing n points (n*2 for 2D points, n*3 for 3D points) and a corresponding touch matrix , sized (n+1)*(n+1), and exports them in VTK format.

Expand Down
5 changes: 4 additions & 1 deletion reference__binary.md
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,9 @@ Subtracts one binary image from another.
### <img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_clij2_logo.png" width="18" height="18"/><img src="images/mini_clijx_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_binaryUnion">binaryUnion</a>
Computes a binary image (containing pixel values 0 and 1) from two images X and Y by connecting pairs of pixels x and y with the binary union operator |.

### <img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_clijx_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_binaryWekaPixelClassifier">binaryWekaPixelClassifier (Experimental)</a>
Applies a pre-trained CLIJx-Weka model to a 2D image.

### <img src="images/mini_clij1_logo.png" width="18" height="18"/><img src="images/mini_clij2_logo.png" width="18" height="18"/><img src="images/mini_clijx_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_binaryXOr">binaryXOr</a>
Computes a binary image (containing pixel values 0 and 1) from two images X and Y by connecting pairs of pixels x and y with the binary operators AND &, OR | and NOT ! implementing the XOR operator.

Expand Down Expand Up @@ -161,7 +164,7 @@ Determines the overlap of two binary images using the Jaccard index.
Determines the overlap of two binary images using the Sorensen-Dice coefficent.

### <img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_clijx_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_greyLevelAtttributeFiltering">greyLevelAtttributeFiltering (Experimental)</a>
Inspired by Grayscale attribute filtering from MorpholibJ library by David Legland & Ignacio Arganda-Carreras. This plugin will remove components in a grayscale image based on user-specified area (for 2D: pixels) or volume (3D: voxels). For each gray level specified in the number of bins, binary images will be generated, followed by exclusion of objects (labels) below a minimum pixel count. All the binary images for each gray level are combined to form the final image. The output is a grayscale image, where bright objects below pixel count are removed. It is recommended that low values be used for number of bins, especially for large 3D images, or it may take long time.
Inspired by Grayscale attribute filtering from MorpholibJ library by David Legland & Ignacio Arganda-Carreras.

<a name="I"></a>

Expand Down
2 changes: 1 addition & 1 deletion reference__filter.md
Original file line number Diff line number Diff line change
Expand Up @@ -197,7 +197,7 @@ Computes the gradient of gray values along Y.
Computes the gradient of gray values along Z.

### <img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_clijx_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_greyLevelAtttributeFiltering">greyLevelAtttributeFiltering (Experimental)</a>
Inspired by Grayscale attribute filtering from MorpholibJ library by David Legland & Ignacio Arganda-Carreras. This plugin will remove components in a grayscale image based on user-specified area (for 2D: pixels) or volume (3D: voxels). For each gray level specified in the number of bins, binary images will be generated, followed by exclusion of objects (labels) below a minimum pixel count. All the binary images for each gray level are combined to form the final image. The output is a grayscale image, where bright objects below pixel count are removed. It is recommended that low values be used for number of bins, especially for large 3D images, or it may take long time.
Inspired by Grayscale attribute filtering from MorpholibJ library by David Legland & Ignacio Arganda-Carreras.

<a name="I"></a>

Expand Down
10 changes: 8 additions & 2 deletions reference__label.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ __Please note:__ CLIJ is deprecated. [Make the transition to CLIJ2](https://clij

__Categories:__ [Binary](https://clij.github.io/clij2-docs/reference__binary), [Filter](https://clij.github.io/clij2-docs/reference__filter), [Graphs](https://clij.github.io/clij2-docs/reference__graph), [Labels](https://clij.github.io/clij2-docs/reference__label), [Math](https://clij.github.io/clij2-docs/reference__math), Matrices, [Measurements](https://clij.github.io/clij2-docs/reference__measurement), [Projections](https://clij.github.io/clij2-docs/reference__project), [Transformations](https://clij.github.io/clij2-docs/reference__transform)

<a href="#A">\[A\]</a>, B,<a href="#C">\[C\]</a>,<a href="#D">\[D\]</a>,<a href="#E">\[E\]</a>,<a href="#F">\[F\]</a>,<a href="#G">\[G\]</a>, H, I, J, K,<a href="#L">\[L\]</a>,<a href="#M">\[M\]</a>, N, O,<a href="#P">\[P\]</a>, Q, R,<a href="#S">\[S\]</a>,<a href="#T">\[T\]</a>, U,<a href="#V">\[V\]</a>, W, X, Y, Z
<a href="#A">\[A\]</a>, B,<a href="#C">\[C\]</a>,<a href="#D">\[D\]</a>,<a href="#E">\[E\]</a>,<a href="#F">\[F\]</a>,<a href="#G">\[G\]</a>, H, I, J, K,<a href="#L">\[L\]</a>,<a href="#M">\[M\]</a>, N, O,<a href="#P">\[P\]</a>, Q, R,<a href="#S">\[S\]</a>,<a href="#T">\[T\]</a>, U,<a href="#V">\[V\]</a>,<a href="#W">\[W\]</a>, X, Y, Z

<a name="A"></a>

Expand Down Expand Up @@ -128,7 +128,7 @@ Takes a label map with n labels and generates a (n+1)*(n+1) matrix where all pix
Takes a labelmap with n labels and generates a (n+1)*(n+1) matrix where all pixels are set to 0 exept those where labels are touching.

### <img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_clijx_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_greyLevelAtttributeFiltering">greyLevelAtttributeFiltering (Experimental)</a>
Inspired by Grayscale attribute filtering from MorpholibJ library by David Legland & Ignacio Arganda-Carreras. This plugin will remove components in a grayscale image based on user-specified area (for 2D: pixels) or volume (3D: voxels). For each gray level specified in the number of bins, binary images will be generated, followed by exclusion of objects (labels) below a minimum pixel count. All the binary images for each gray level are combined to form the final image. The output is a grayscale image, where bright objects below pixel count are removed. It is recommended that low values be used for number of bins, especially for large 3D images, or it may take long time.
Inspired by Grayscale attribute filtering from MorpholibJ library by David Legland & Ignacio Arganda-Carreras.

<a name="L"></a>

Expand Down Expand Up @@ -259,3 +259,9 @@ Trains a Weka model using functionality of Fijis Trainable Weka Segmentation plu
### <img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_clij2_logo.png" width="18" height="18"/><img src="images/mini_empty_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_voronoiLabeling">voronoiLabeling</a>
Takes a binary image, labels connected components and dilates the regions using a octagon shape until they touch.

<a name="W"></a>

## W
### <img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_clijx_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_wekaLabelClassifier">wekaLabelClassifier (Experimental)</a>
Applies a pre-trained CLIJx-Weka model to an image and a corresponding label map.

17 changes: 16 additions & 1 deletion reference__segmentation.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ __Please note:__ CLIJ is deprecated. [Make the transition to CLIJ2](https://clij

__Categories:__ [Binary](https://clij.github.io/clij2-docs/reference__binary), [Filter](https://clij.github.io/clij2-docs/reference__filter), [Graphs](https://clij.github.io/clij2-docs/reference__graph), [Labels](https://clij.github.io/clij2-docs/reference__label), [Math](https://clij.github.io/clij2-docs/reference__math), Matrices, [Measurements](https://clij.github.io/clij2-docs/reference__measurement), [Projections](https://clij.github.io/clij2-docs/reference__project), [Transformations](https://clij.github.io/clij2-docs/reference__transform)

<a href="#A">\[A\]</a>, B, C, D, E, F,<a href="#G">\[G\]</a>, H, I, J, K, L, M, N, O, P, Q, R, S,<a href="#T">\[T\]</a>, U, V, W, X, Y, Z
<a href="#A">\[A\]</a>,<a href="#B">\[B\]</a>, C, D, E, F,<a href="#G">\[G\]</a>, H, I, J, K, L, M, N, O, P, Q, R, S,<a href="#T">\[T\]</a>, U, V,<a href="#W">\[W\]</a>, X, Y, Z

<a name="A"></a>

Expand All @@ -25,12 +25,21 @@ Applies a Weka model using functionality of Fijis Trainable Weka Segmentation pl
### <img src="images/mini_clij1_logo.png" width="18" height="18"/><img src="images/mini_clij2_logo.png" width="18" height="18"/><img src="images/mini_clijx_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_automaticThreshold">automaticThreshold</a>
The automatic thresholder utilizes the threshold methods from ImageJ on a histogram determined on the GPU to create binary images as similar as possible to ImageJ 'Apply Threshold' method.

<a name="B"></a>

## B
### <img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_clijx_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_binaryWekaPixelClassifier">binaryWekaPixelClassifier (Experimental)</a>
Applies a pre-trained CLIJx-Weka model to a 2D image.

<a name="G"></a>

## G
### <img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_clijx_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_generateFeatureStack">generateFeatureStack (Experimental)</a>
Generates a feature stack for Trainable Weka Segmentation.

### <img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_clijx_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_generateLabelFeatureImage">generateLabelFeatureImage (Experimental)</a>
Generates a feature image for Trainable Weka Segmentation.

<a name="T"></a>

## T
Expand Down Expand Up @@ -97,3 +106,9 @@ Trains a Weka model using functionality of Fijis Trainable Weka Segmentation plu
### <img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_clijx_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_trainWekaModelWithOptions">trainWekaModelWithOptions (Experimental)</a>
Trains a Weka model using functionality of Fijis Trainable Weka Segmentation plugin.

<a name="W"></a>

## W
### <img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_empty_logo.png" width="18" height="18"/><img src="images/mini_clijx_logo.png" width="18" height="18"/><a href="https://clij.github.io/clij2-docs/reference_wekaLabelClassifier">wekaLabelClassifier (Experimental)</a>
Applies a pre-trained CLIJx-Weka model to an image and a corresponding label map.

19 changes: 19 additions & 0 deletions reference_binaryWekaPixelClassifier.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
## binaryWekaPixelClassifier
<img src="images/mini_empty_logo.png"/><img src="images/mini_empty_logo.png"/><img src="images/mini_clijx_logo.png"/>

Applies a pre-trained CLIJx-Weka model to a 2D image.

You can train your own model using menu Plugins > Segmentation > CLIJx Binary Weka Pixel ClassifierMake sure that the handed over feature list is the same used while training the model.

Categories: [Binary](https://clij.github.io/clij2-docs/reference__binary), [Segmentation](https://clij.github.io/clij2-docs/reference__segmentation)

### Usage in ImageJ macro
```
Ext.CLIJx_binaryWekaPixelClassifier(Image input, Image destination, String features, String modelfilename);
```


[Back to CLIJ2 reference](https://clij.github.io/clij2-docs/reference)
[Back to CLIJ2 documentation](https://clij.github.io/clij2-docs)

[Imprint](https://clij.github.io/imprint)
56 changes: 56 additions & 0 deletions reference_generateLabelFeatureImage.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
## generateLabelFeatureImage
<img src="images/mini_empty_logo.png"/><img src="images/mini_empty_logo.png"/><img src="images/mini_clijx_logo.png"/>

Generates a feature image for Trainable Weka Segmentation.

Use this terminology to specify which features should be generated:
* BOUNDING_BOX_DEPTH
* BOUNDING_BOX_WIDTH
* BOUNDING_BOX_HEIGHT
* CENTROID_X
* CENTROID_Y
* CENTROID_Z
* MASS_CENTER_X
* MASS_CENTER_Y
* MASS_CENTER_Z
* MAX_DISTANCE_TO_CENTROID
* MAX_DISTANCE_TO_MASS_CENTER
* MEAN_DISTANCE_TO_CENTROID
* MEAN_DISTANCE_TO_MASS_CENTER
* MAX_MEAN_DISTANCE_TO_CENTROID_RATIO
* MAX_MEAN_DISTANCE_TO_MASS_CENTER_RATIO
* MAXIMUM_INTENSITY
* MEAN_INTENSITY
* MINIMUM_INTENSITY
* SUM_INTENSITY
* STANDARD_DEVIATION_INTENSITY
* PIXEL_COUNT
* local_mean_average_distance_of_touching_neighbors
* local_maximum_average_distance_of_touching_neighbors
* count_touching_neighbors
* local_minimum_average_distance_of_touching_neighbors
* average_touch_pixel_count
* local_minimum_count_touching_neighbors
* average_distance_n_closest_neighbors
* average_distance_of_touching_neighbors
* local_mean_count_touching_neighbors
* local_mean_average_distance_n_closest_neighbors
* local_maximum_average_distance_n_closest_neighbors
* local_standard_deviation_average_distance_of_touching_neighbors
* local_maximum_count_touching_neighbors
* local_standard_deviation_count_touching_neighbors
* local_standard_deviation_average_distance_n_closest_neighbors
* local_minimum_average_distance_n_closest_neighbors

Example: "MEAN_INTENSITY count_touching_neighbors"

### Usage in ImageJ macro
```
Ext.CLIJx_generateLabelFeatureImage(Image input, Image label_map, Image label_feature_image_destination, String feature_definitions);
```


[Back to CLIJ2 reference](https://clij.github.io/clij2-docs/reference)
[Back to CLIJ2 documentation](https://clij.github.io/clij2-docs)

[Imprint](https://clij.github.io/imprint)
Loading

0 comments on commit 621c70f

Please sign in to comment.