Skip to content

cindytsai/Introduction_to_Numerical_Analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

78 Commits
 
 
 
 
 
 

Repository files navigation

Introduction to Numerical Analysis

Course Introduction to Numerical Analysis at NTU.
All codes are using Python36.

Lecture

  • Lecture201 -Approximation errors and Roundoff errors
    practice1 : Calculating pi with Liu Hui method.
    practice2 : Calculating pi with Riemann zeta function.
  • Lecture202 -Numerical differential and integration
    practice1 : Integral with Simpson 3/8 method.
    practice2 : Difference between different interval using scipy.integrate.
  • Lecture203 -Numpy array and matplotlib.
    practice1 : Some basic array operation.
    practice2 : Using matplotlib.pyplot to plot functions.
  • Lecture204 -Linear algebra and matplotlib image processing.
    practice1 : Use np.linalg.inv and np.linalg.det to verfiy some properties.
    practice2 : Use plt.imread to read and process image, plt.imshow and plt.show to show image.
  • Lecture205 -Root finding, curve fitting, and minimization.
    practice1 : Use scipy.optimize.newton to find root by Newton's method, and build arcsin, arccos functions.
    practice2 : Use np.polyfit to fit, plt.errorbar to plot data with error.

Assignment

  • Assignment1
    1-1 : Simply numerical differential using scipy.misc.
    1-2 : Simply numerical integration using scipy.integrate.
    1-3 : Convolution, Breit-Wigner distribution, Gaussian distribution using scipy.integrate.
  • Assignment2
    2-1 : Array operation using np.fromfunction.
    2-2 : Array operation using np.fromfunction.
    2-3 : Use np.array to play Game of Life.
  • Assignment3
    3-1 : Use scipy.linalg.solve to solve equation.
    3-2 : Use np.diag,np.sqrt to compute covariance matrix into correlation matrix.
    3-3 : Computing least square. Code involved np.linspace, np.dot, np.transpose.
  • Assignment4
    4-1 : Use scipy.optimize.newton to find root by Newton's method.
    4-2 : Use scipy.optimize.minimize to fit data with error range by calculating X^2.
    4-3 : Use np.hstack, plt.hist to build histograms. Then try to maximize a given function by scipy.optimize.minimize.
  • Assignment5
    5-1 : Use scipy.integrate.solve_ivp to solve position, velocity, acceleration, with resistance force ODE.
    5-2 : Use scipy.integrate.solve_ivp to solve ODE a multi-star system in 2D.
    5-3 : Use scipy.integrate.solve_ivp to solve ODE charged particle moving in magnetic field and electric field.
  • Assignment6
    6-1 : Use np.random.rand to generate random number within the target function distribution.
    6-2 : Use np.random.rand to generate a unit circle's chord.
    6-3 : Use np.random.rand to generate smeared exponential decay Gaussian distribution function.

About

Course Introduction to Numerical Analysis at NTU

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages