Skip to content

Learning Dynamic Routing in Convolutional Networks

Notifications You must be signed in to change notification settings

chriszhenghaochen/skipnet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

60 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SkipNet: Learning Dynamic Routing in Convolutional Networks

This repository contains the code and trained models for the work:

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, Joseph E. Gonzalez
SkipNet: Learning Dynamic Routing in Convolutional Networks 
To appear in ECCV 2018

SkipNet learns to route images through a subset of layers on a per-input basis. Challenging images are routed through more layers than easy images. We talk about two model designs with both feedforward gates and reccurent gates which enable different levels of parameter sharing in the paper. The model illustrations are as follows.

SkipNet with feedforward gates SkipNet with recurrent gates

For other details, please refer to the paper.

Updates

  • [April 9, 2018] add ray tune for auto hyperparameter search on CIFAR. Thanks @richardliaw
  • [March 2, 2018] add trained model checkpoints on the CIFAR-10 dataset
  • [March 1, 2018] upgrade ImageNet code to support Pytorch 3.0; add trained model checkpoints for ResNet-101 and ResNet-50

SkipNet on CIFAR datasets

All the model configuration and training/evaluation code are available under ./cifar. If you want to train your own SkipNet, you can follow the document under the same folder.

SkipNet on ImageNet datasets

Similarly, the model configuration and train/evaluation code are available under ./imagenet. Detailed instructions can be found in the document under the same folder.

About

Learning Dynamic Routing in Convolutional Networks

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%