-
Notifications
You must be signed in to change notification settings - Fork 16
/
test_scaling_sla_flabl.py
119 lines (97 loc) · 5.79 KB
/
test_scaling_sla_flabl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from model.scaling.ProactiveSLAScaling import SLABasedOnVms as BrokerScaling
from utils.IOUtil import load_number_of_vms, save_scaling_results_to_csv
from utils.MetricUtil import ADI
import numpy as np
model_names = {"ann": "ann", "mlnn":"mlnn", "flnn": "flnn", "fl_gann": "fl_gann", "fl_bfonn": "fl_bfonn", "fl_abfolsnn": "fl_abfolsnn"}
input_types = {"uni": "uni", "multi": "multi"}
models = [
{"name": model_names["ann"],
"sliding": 3,
"input_type": input_types["uni"],
"cpu": "ANN-sliding_3-act_func1_0-act_func2_0-optimizer_0-num_hidden_12-epoch_2000-lr_0.1-batch_64",
"ram": "ANN-sliding_3-act_func1_0-act_func2_0-optimizer_0-num_hidden_12-epoch_2000-lr_0.1-batch_64"},
{"name": model_names["ann"],
"sliding": 3,
"input_type": input_types["multi"],
"cpu": "ANN-sliding_3-act_func1_0-act_func2_0-optimizer_0-num_hidden_12-epoch_2000-lr_0.1-batch_64",
"ram": "ANN-sliding_3-act_func1_0-act_func2_0-optimizer_0-num_hidden_12-epoch_2000-lr_0.1-batch_64"},
{"name": model_names["mlnn"],
"sliding": 3,
"input_type": input_types["uni"],
"cpu": "MLNN-sliding_3-act_func1_0-act_func2_0-optimizer_0-num_h1_12_h2_20_h3_5-epoch_2000-lr_0.1-batch_64",
"ram": "MLNN-sliding_3-act_func1_0-act_func2_0-optimizer_0-num_h1_12_h2_20_h3_5-epoch_2000-lr_0.1-batch_64"},
{"name": model_names["mlnn"],
"sliding": 3,
"input_type": input_types["multi"],
"cpu": "MLNN-sliding_3-act_func1_0-act_func2_0-optimizer_0-num_h1_12_h2_20_h3_5-epoch_2000-lr_0.1-batch_64",
"ram": "MLNN-sliding_3-act_func1_0-act_func2_0-optimizer_0-num_h1_12_h2_20_h3_5-epoch_2000-lr_0.1-batch_64"},
{"name": model_names["flnn"],
"sliding": 3,
"input_type": input_types["uni"],
"cpu": "flnn-sliding_3-ex_func_3-act_func_1-epoch_2000-lr_0.1-batch_64-beta_0.9",
"ram": "flnn-sliding_3-ex_func_3-act_func_1-epoch_2000-lr_0.1-batch_64-beta_0.9"},
{"name": model_names["flnn"],
"sliding": 3,
"input_type": input_types["multi"],
"cpu": "flnn-sliding_3-ex_func_3-act_func_1-epoch_2000-lr_0.1-batch_64-beta_0.9",
"ram": "flnn-sliding_3-ex_func_3-act_func_1-epoch_2000-lr_0.1-batch_64-beta_0.9"},
{"name": model_names["fl_gann"],
"sliding": 3,
"input_type": input_types["uni"],
"cpu": "FL_GANN-sliding_3-ex_func_0-act_func_1-epoch_700-pop_size_250-pc_0.95-pm_0.025",
"ram": "FL_GANN-sliding_3-ex_func_0-act_func_1-epoch_700-pop_size_250-pc_0.95-pm_0.025"},
{"name": model_names["fl_gann"],
"sliding": 3,
"input_type": input_types["multi"],
"cpu": "FL_GANN-sliding_3-ex_func_0-act_func_1-epoch_700-pop_size_250-pc_0.95-pm_0.025",
"ram": "FL_GANN-sliding_3-ex_func_0-act_func_1-epoch_700-pop_size_250-pc_0.95-pm_0.025"},
{"name": model_names["fl_bfonn"],
"sliding": 3,
"input_type": input_types["uni"],
"cpu": "FL_BFONN-sliding_3-ex_func_0-act_func_0-pop_size_50-steps_(4, 4, 50)-dwhw_(0.1, 0.2, 0.1, 10)-step_size_0.1-p_elim_0.25-swim_length_4",
"ram": "FL_BFONN-sliding_3-ex_func_0-act_func_0-pop_size_50-steps_(4, 4, 50)-dwhw_(0.1, 0.2, 0.1, 10)-step_size_0.1-p_elim_0.25-swim_length_4"},
{"name": model_names["fl_bfonn"],
"sliding": 3,
"input_type": input_types["multi"],
"cpu": "FL_BFONN-sliding_3-ex_func_0-act_func_0-pop_size_50-steps_(4, 4, 50)-dwhw_(0.1, 0.2, 0.1, 10)-step_size_0.1-p_elim_0.25-swim_length_4",
"ram": "FL_BFONN-sliding_3-ex_func_0-act_func_0-pop_size_50-steps_(4, 4, 50)-dwhw_(0.1, 0.2, 0.1, 10)-step_size_0.1-p_elim_0.25-swim_length_4"},
{"name": model_names["fl_abfolsnn"],
"sliding": 3,
"input_type": input_types["uni"],
"cpu": "FL_ABFOLSNN-sliding_3-ex_func_0-act_func_1-epoch_1000-pop_size_50-step_size_(0.1, 1e-05)-N_split_40-N_adapt_5-p_ed_0.25-swim_length_6",
"ram": "FL_ABFOLSNN-sliding_3-ex_func_0-act_func_1-epoch_800-pop_size_50-step_size_(0.1, 1e-05)-N_split_40-N_adapt_3-p_ed_0.25-swim_length_4"},
{"name": model_names["fl_abfolsnn"],
"sliding": 3,
"input_type": input_types["multi"],
"cpu": "FL_ABFOLSNN-sliding_2-ex_func_1-act_func_1-epoch_1000-pop_size_50-step_size_(0.1, 1e-05)-N_split_60-N_adapt_3-p_ed_0.25-swim_length_4",
"ram": "FL_ABFOLSNN-sliding_2-ex_func_2-act_func_1-epoch_800-pop_size_50-step_size_(0.1, 1e-05)-N_split_60-N_adapt_5-p_ed_0.25-swim_length_4"},
]
s_coffs = [ 1.0, 1.3, 1.5, 1.7, 2.0, 2.2, 2.5]
L_adaps = [ 5 ]
resource_real_used = load_number_of_vms('vms_real_used_CPU_RAM.csv')
for model in models:
if model["input_type"] == "multi":
cpu_file = "paper/test1/multi_cpu/" + model["cpu"] + ".csv"
ram_file = "paper/test1/multi_ram/" + model["ram"] + ".csv"
else:
# cpu_file = "paper/test1/cpu/" + model["cpu"] + ".csv"
# ram_file = "paper/test1/ram/" + model["ram"] + ".csv"
continue
violated_arrays = []
adi_arrays = []
for s_coff in s_coffs:
violated_arr = []
adi_arr = []
for L_adap in L_adaps:
broker = BrokerScaling(scaling_coefficient=s_coff, adaptation_len=L_adap)
neural_net = broker.sla_violate(cpu_file, ram_file)
eval_scaler = ADI(lower_bound=0.6, upper_bound = 0.8, metric='CPU Utilisation %')
adi = sum(np.array(eval_scaler.calculate_ADI(resource_used=resource_real_used, resource_allocated=neural_net[1][-1])))
violated_arr.append(round(neural_net[0], 2))
adi_arr.append(round(adi, 2))
violated_arrays.append(violated_arr)
adi_arrays.append(adi_arr)
violated_path_file = "paper/scaling/sliding_" + str(model["sliding"]) + "/" + model["input_type"] + "/" + model["name"] + "_violated"
adi_path_file = "paper/scaling/sliding_" + str(model["sliding"]) + "/" + model["input_type"] + "/" + model["name"] + "_adi"
save_scaling_results_to_csv(violated_arrays, violated_path_file)
save_scaling_results_to_csv(adi_arrays, adi_path_file)