Skip to content

caroheymes/Jedha_Kayak_project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Jedha_Kayak_project

La consigne du TP était de collecter les données sur le site booking.com sur les hôtels dans une cinquantaine de villes en France.

cities = [
"Mont Saint Michel", "St Malo", "Bayeux", "Le Havre", "Rouen", "Paris", "Amiens", "Lille", "Strasbourg", "Chateau du Haut Koenigsbourg", "Colmar", "Eguisheim", "Besancon", "Dijon", "Annecy", "Grenoble", "Lyon", "Gorges du Verdon", "Bormes les Mimosas", "Cassis", "Marseille", "Aix en Provence", "Avignon", "Uzes", "Nimes", "Aigues Mortes", "Saintes Maries de la mer", "Collioure", "Carcassonne", "Ariege", "Toulouse", "Montauban", "Biarritz", "Bayonne", "La Rochelle"]

Approche choisie :

L'approche choisie a été d'exploiter le template crawl de scrapy via

scrapy genspider -t crawl k2 crawlhotels booking.com

En effet ce template permet de gérer simultanément les liens de chaque hotel et la pagination où les "rules" sont détaillées ci-dessous :

        rules = (
            Rule(LinkExtractor(restrict_xpaths= '//h3[contains(@class, "sr-hotel__title")]/a'), callback='parse_item', follow=True),
            Rule(LinkExtractor(restrict_xpaths= '//li[@class="bui-pagination__item bui-pagination__next-arrow"]/a')),
        )

Exploitation des micro-données

L'exploration des sitemaps et du fichier robot.txt n'a pas permis de mettre en évidence une approche directe.

A noter, chaque page "hotel" de type "https://www.booking.com/hotel/fr/the-people-hostel-marseille.fr.html" comporte un script ld+json où l'information est déjà structurée comme dans l'exemple ci-dessous:

{
   "@context" : "http://schema.org",
   "aggregateRating" : {
      "ratingValue" : 8.5,
      "bestRating" : 10,
      "reviewCount" : 468,
      "@type" : "AggregateRating"
   },
   "url" : "https://www.booking.com/hotel/fr/the-people-hostel-marseille.fr.html",
   "priceRange" : "Tarifs à partir de € 29 par nuit pour les dates à venir (nous ajustons nos tarifs)",
   "name" : "The People Hostel - Marseille",
   "address" : {
      "@type" : "PostalAddress",
      "streetAddress" : "7 rue Jean-Marc Cathala, 13001 Marseille, France",
      "addressLocality" : "7 rue Jean-Marc Cathala",
      "addressRegion" : "Provence-Alpes-Côte d'Azur",
      "postalCode" : "13001",
      "addressCountry" : "France"
   },
   "@type" : "Hotel",
   "hasMap" : "https://maps.googleapis.com/maps/api/staticmap?center=43.3011050,5.3712820&size=1600x1200&sensor=false&zoom=15&markers=color:blue%7c43.3011050,5.3712820&client=gme-booking&channel=booking-frontend&signature=OdWMB7JEoZWsz4XwvxyoG1n8GDg=",
   "image" : "https://cf.bstatic.com/xdata/images/hotel/max500/270127767.jpg?k=bf269a48e8afb82d5600cd7ee20b5fee20d9113a25a5268a53fef503e3380d88&o=&hp=1",
   "description" : "Dotée d’un bar et d’une terrasse, l’auberge de jeunesse The People Hostel - Marseille propose des hébergements à Marseille, à 1 km du centre commercial Les..."
}

On accède aux données du ld+json en affectant le contenu à une variable data :

data = json.loads(response.xpath('//script[@type="application/ld+json"]/text()').get())

Il suffit alors de créer un dictionnaire temporaire "microdata" pour y stocker les valeurs contenues dans le ld+json et d'autres points de données issus de header de la requête (user agent, referrer)

microdata = {       'user_agent' : str(response.request.headers['User-Agent']), # permet de stocker le user agent utilisé
                    'city' : str(response.request.headers['Referer']),# ville pour jointure avec d'autres données
                    'raw_url' : response.url, #url où les informations sont présentes
                    'company' : data['name'], #point de données dans le script ld+json
                    }

On a instancié ItemLoader pour faciliter le cleansing

            l= ItemLoader(item= K2Item(), response = response)
            l.add_value('user_agent', microdata['user_agent'])
            l.add_value('city', microdata['city'])
            l.add_value('raw_url', microdata['raw_url'])
            l.add_value('company', microdata['company'])
            l.add_value('ratingValue', microdata['ratingValue'])

Cette approche permet de collecter d'autres éléments situés dans d'autres noeuds du DOM comme le montre l'exemple ci-dessous :

            l.add_xpath('wifi', '//*[@data-name-en = "Free WiFi Internet Access Included"]/text()[2]') # infos relatives au wifi
            l.add_xpath('family', '//*[@data-name-en = "Family Rooms"]/text()[2]') # infos relatives au aux chambres pour familles nombreuses
            l.add_xpath('complete_description', '//*[@id="property_description_content"]/child::node()/text()') #description complète de l'hôtel avec une balise enfant

L'ensemble des points de données est retraité dans le fichier items.py avec la méthode

           yield l.load_item()

Nettoyage de l'information brute :

Un autre point tout à fait intéressant est l'utilisation du module itemLoaders qui permet le nettoyage des données brutes. Il est nécessaire d'importer certains modules dans ce fichier :

from scrapy.loader.processors import Join, MapCompose, TakeFirst
from w3lib.html import remove_tags, replace_escape_chars,strip_html5_whitespace,get_base_url
import re

Les fonctions personnalisées du fichier items.py permettent un nettoyage plus robuste des données comme le montrent les exemples ci-dessous

détermination de l'url canonique

    def short_url(string):
        return re.search("(.*)(?=\?)", string).group(0)

passage des raisons sociales des hôtels en haut de casse

    def upper(string):
        return string.upper()

Extraction des prix planchers

l'information brute est du type
"priceRange" : "Tarifs à partir de € 29 par nuit pour les dates à venir (nous ajustons nos tarifs)"

    def clean_price(string):
        string = ''.join(string)
        return  re.search("[0-9]{1,5}", string).group(0)

Détermination de la latitude et de la longitude dans les urls des cartes

    def geo(string):
        try:
            string = ''.join(string)
            return re.search("(?<=lue%7c)(.+?)(?=&)",string).group(0)
        except:
            return "no data available"

Suppression des sauts de lignes éventuels

    def stripn(string):
        string = ''.join(string)
        return string.strip('\n')

Extraction du libellé de la ville pour jointure (vient de headers['Referrer])

    def get_city(string):
        string = ''.join(string)
        return re.search("(?<=&ss\=)(.+?)(?=&)",string).group(0).replace('%20',' ')

Exemples de nettoyage de l'information brute :

    user_agent = scrapy.Field(
        input_processor = MapCompose(remove_tags),
        output_processor = TakeFirst()
    )
    city = scrapy.Field(
        input_processor = MapCompose(get_city),
        output_processor = TakeFirst()
    )

    raw_url = scrapy.Field(
        input_processor = MapCompose(remove_tags),
        output_processor = TakeFirst()

Note sur l'environnement d'exécution :

Il a été nécessaire d'importer protego, scrapy, itemLoaders Le script intégrant la randomisation des user-agents, certaines installations en local se sont avérées complexes dans un environnement local windows 10 (...). Nul doute que les commandes suivantes résoudront un certain nombre de difficultés pour d'autres personnes qui voudront ré-utiliser le code:

conda install -c anaconda libxml2
conda install -c anaconda requests
conda  install Scrapy-User-Agents

Export de données

L'export des doonnées se fait en ligne de commande avec l'instruction

crapy crawl crawlhotels -o data.json

Cartes

Le notebook est consultable à l'adresse: https://colab.research.google.com/drive/1R81Bz-WBEtuzCGakiXbX3XqhnSVG-gNW?usp=sharing

image

Map with description of venues :

image

image

image

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published