- Data Types
- Built-in Functions
- Type Converting
- Getting Input from users
- Lists
- Tuples
- Dictionaries
- Sets
- Boolean Expressions
- Logical Operators
- If-Else
- Grade System User Interaction Example
- Nested If
- Odd or Even Example
- range()
- In Operator
- For Loop
- Iterating in Strings
- Iterating in two(2) dimensional Lists
- continue
- break
- zip()
- Iteration in a Dictionary
- Iterating pair values
- While Loop
- While True
- Intro to Functions
- return()
- Number of Arguments
- Arbitrary Arguments, *args
- Arbitrary Keyword Arguments, **kwargs
- Giving output with Information
- Functions that have 2 parameters
- Predefined Parameters in Functions
- Local and Global Variables
- Changing global variables in local area
- Pass Statement
- What is object oriented programming?
- Defining Classes
- Instantiation - Creating objects
- Class and Instance Attributes
- Instance(Object) Methods
- Inheritance
- Overriding - Extending the Functionality of a Parent Class
- super() keyword
- What is Numpy?
- Importing Numpy
- Numpy arrays and Dimensions
- Creating Numpy Arrays
- Zero arrays
- Ones arrays
- Full arrays
- Identify Matrixes
- Linear Series
- Distributions arrays - Random
- Array Indexing
- Subsets
- reshape() function
- Flattening the Arrays
- Concatenation
- Splitting
- Sorting
- Broadcasting
- Array Math
- Dot(Scalar) Product
- What is Pandas?
- Importing Pandas Library
- Pandas Series
- Pandas Dataframes
- Filtering
- Adding/Removing rows and columns
- Merging Dataframes
- Sorting
- Aggregation Functions
- Grouping
- Apply
- Pivot Tables
- Missing values(NaN)
- Working external files in Pandas(csv,excel)
- Exploring Netflix Dataset(basic)
- Data Cleaning / Cleasing
- Noisy Data
- Missing Data Analysis
- Outlier Detection
- Data Standardization / Feature Scaling
- Normalization(0-1 Scaling)
- Standardization(Z Score Scaling)
- Min-Max Scaling
- Binary Transformation
- Variable Transformation
- Label Encoding
- One Hot Encoding
- Main Libraries for Data Visualisation
- What is Exploratory data analysis(EDA)?
- Importing Libraries
- Matplotlib
- Pyplot
- Line Plot
- Bar Plot
- Pie Chart
- Stack Plot
- Histograms
- Scatter Plot
- Time Series Plotting
- Box Plot
- Heatmap
- Seaborn
- Pyplot
- Line Plot
- Bar Plot
- Cat Plot
- Histograms
- Density Plots
- Pair Plot
- Scatter Plot
- Time Series Plotting
- Box Plot
- Heatmap
- Multi-plot Grids
- Pandas
- Basic Plots
- Bar Plots
- Histograms
- Box Plots
- Area Plots
- Scatter Plots
- Hexagonal Bin Plots
- Pie Plots
- Plotting Tools
- Plotnine - ggplot
- Line Plot
- Bar Plot
- Scatter Plot
- Histograms
- Density Plot
- Box Plot
- Violin Plot
- Plotly
- Line Plot
- Bar Plot
- Pie Charts
- Bubble Charts
- Scatter Plots
- Filled area Plots
- Gannt Charts
- Sunburst Charts
- Tables
- What is Linear Regression?
- Simple Linear Regression (Theory - Model- Tuning)
- Multiple Linear Regression (Theory - Model- Tuning)
- Least-Squares Regression(Ordinary Least Squares) (Theory - Model- Tuning)
- Principal Component Analysis (PCA)
- Principal component regression(PCR) (Theory - Model- Tuning)
- Shrinkage(Regularization) Methods
- Partial Least Squares (Theory - Model- Tuning)
- Ridge Regression(L2 Regularization) (Theory - Model- Tuning)
- Lasso Regression(L1 Regularization) (Theory - Model- Tuning)
- Elastic Net Regression (Theory - Model- Tuning)
- K - Nearest Neighbors(KNN) (Theory - Model- Tuning)
- Support Vector Regression(SVR) (Theory - Model- Tuning)
- Non-Linear Support Vector Regression(SVR) (Theory - Model- Tuning)
- Regression(Decision) Trees (CART) (Theory - Model- Tuning)
- Ensemble Learning - Bagged Trees(Bagging) (Theory - Model- Tuning)
- Ensemble Learning - Random Forests (Theory - Model- Tuning)
- Gradient Boosting Machines(GBM) (Theory - Model- Tuning)
- Light Gradient Boosting Machines(LGBM) (Theory - Model- Tuning)
- XGBoost(Extreme Gradient Boosting) (Theory - Model- Tuning)
- Catboost (Theory - Model- Tuning)
- Clustering
- K-Means Clustering (Theory - Exploratory Data Analysis - Preprocessing - Model- Tuning)
- Color - Image Quantization
- Hierarchical Clustering (Theory - Model)
- DBSCAN (Density-based spatial clustering) (Theory - Model- Tuning)
- Principal Components Analysis(PCA) (Theory - Manual Implementation of PCA - Model)
- Classification and Evaluation Metrics
- Logistic Regression (Theory - Model- Tuning)
- K - Nearest Neighbors(KNN) (Theory - Model- Tuning)
- Support Vector Machines(SVC) - Linear Kernel (Theory - Model- Tuning)
- Support Vector Machines(SVC) - Radial Basis Kernel (Theory - Model- Tuning)
- Decision Tree Classification (Theory - Model- Tuning)
- Ensemble Learning - Random Forests Classification (Theory - Model- Tuning)
- Naive Bayes Classification (Theory - Model)
- GBM(Gradient Boosting Machines) Classification (Model- Tuning)
- XGBoost(Extreme Gradient Boosting) Classification (Theory - Model- Tuning)
- LGBM(Light Gradient Boosting Machines) Classification (Theory - Model- Tuning)
- What is Pytorch?
- Importing Libraries
- Basics of Pytorch
- Tensors
- Math Operations
- Common Funtions
- Variables - Autograd
- Datasets & DataLoaders
- Common Modules: Optim - nn
- Extra - Useful Resources
- What is Joblib Library?
- Artificial Neural Networks(ANN) Model
- Prediction
- Model Tuning & Validation
- Saving Model as pickle file
- Loading Model
- NLP Intuition
- String Essentials : Creating String
- String Essentials : Querying of Types
- String Essentials : Reaching to Indexes
- String Essentials : First and last characters
- String Essentials : Splitting Characters
- String Essentials : Case Conversions in String
- String Essentials : Capitalizing and titles
- String Essentials : Cropping Characters
- String Essentials : Joining Strings
- String Essentials : Replacing Characters
- String Essentials : contains
- Text Preprocessing : Converting string to other data types
- Text Preprocessing : Case Conversion
- Text Preprocessing : Handling with Punctuation
- Text Preprocessing : Handling with Numbers
- Text Preprocessing : Handling with Stopwords
- Text Preprocessing : Handling with Frequnecies
- Text Preprocessing : Tokenization
- Text Preprocessing : Stemming
- Text Preprocessing : Lemmatization
- Object Standardization
- Linguistic Features : N-Gram
- Linguistic Features : Part of speech tagging (POS)
- Linguistic Features : Chunking(Shallow Parsing)
- Linguistic Features : Noun Chunks
- Linguistic Features : Named Entity Recognition(NER)
- Linguistic Features : Visualization in Spacy
- Text Feature Engineering
- Bag of Words
- Text Visualisation : Bar Plot
- Text Visualisation : Frequency Visualisation
- Text Visualisation : WordCloud
- Transformers, Encoders and Decoders
- Different Models : Bert, HuggingFace, StanfordNLP, NLTK, LSTM etc.
- Sentiment Analysis with Logistic Regression
- Sentiment Analysis with Naive Bayes
- Vector Space Models
- Neural Machine Translation
- Text Summarization
- Classification with Bert
- Spark Basics
- MlLib