Skip to content

Commit

Permalink
chore: replace postfix increment and decrement operators with their p…
Browse files Browse the repository at this point in the history
…refix equivalents
  • Loading branch information
krishnakumarg1984 committed Jun 23, 2023
1 parent 2031067 commit d0e2bba
Show file tree
Hide file tree
Showing 31 changed files with 42 additions and 42 deletions.
2 changes: 1 addition & 1 deletion cpp/examples/forward_backward/inpainting.cc
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@ int main(int argc, char const **argv) {
SOPT_HIGH_LOG("Create dirty vector");
std::normal_distribution<> gaussian_dist(0, sigma);
Vector y(y0.size());
for (sopt::t_int i = 0; i < y0.size(); i++) y(i) = y0(i) + gaussian_dist(mersenne);
for (sopt::t_int i = 0; i < y0.size(); ++i) y(i) = y0(i) + gaussian_dist(mersenne);
// Write dirty imagte to file
if (output != "none") {
Vector const dirty = sampling.adjoint() * y;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ int main(int argc, char const **argv) {
SOPT_HIGH_LOG("Create dirty vector");
std::normal_distribution<> gaussian_dist(0, sigma);
Vector y(y0.size());
for (sopt::t_int i = 0; i < y0.size(); i++) y(i) = y0(i) + gaussian_dist(mersenne);
for (sopt::t_int i = 0; i < y0.size(); ++i) y(i) = y0(i) + gaussian_dist(mersenne);
// Write dirty imagte to file
if (output != "none") {
Vector const dirty = sampling.adjoint() * y;
Expand Down
2 changes: 1 addition & 1 deletion cpp/examples/forward_backward/inpainting_joint_map.cc
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ int main(int argc, char const **argv) {
SOPT_HIGH_LOG("Create dirty vector");
std::normal_distribution<> gaussian_dist(0, sigma);
Vector y(y0.size());
for (sopt::t_int i = 0; i < y0.size(); i++) y(i) = y0(i) + gaussian_dist(mersenne);
for (sopt::t_int i = 0; i < y0.size(); ++i) y(i) = y0(i) + gaussian_dist(mersenne);
// Write dirty imagte to file
if (output != "none") {
Vector const dirty = sampling.adjoint() * y;
Expand Down
2 changes: 1 addition & 1 deletion cpp/examples/forward_backward/l2_inpainting.cc
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ int main(int argc, char const **argv) {
SOPT_HIGH_LOG("Create dirty vector");
std::normal_distribution<> gaussian_dist(0, sigma);
Vector y(y0.size());
for (sopt::t_int i = 0; i < y0.size(); i++) y(i) = y0(i) + gaussian_dist(mersenne);
for (sopt::t_int i = 0; i < y0.size(); ++i) y(i) = y0(i) + gaussian_dist(mersenne);
// Write dirty imagte to file
if (output != "none") {
Vector const dirty = sampling.adjoint() * y;
Expand Down
2 changes: 1 addition & 1 deletion cpp/examples/primal_dual/inpainting.cc
Original file line number Diff line number Diff line change
Expand Up @@ -89,7 +89,7 @@ int main(int argc, char const **argv) {
SOPT_HIGH_LOG("Create dirty vector");
std::normal_distribution<> gaussian_dist(0, sigma);
Vector y(y0.size());
for (sopt::t_int i = 0; i < y0.size(); i++) y(i) = y0(i) + gaussian_dist(mersenne);
for (sopt::t_int i = 0; i < y0.size(); ++i) y(i) = y0(i) + gaussian_dist(mersenne);
// Write dirty image to file
if (output != "none") {
Vector const dirty = sampling.adjoint() * y;
Expand Down
2 changes: 1 addition & 1 deletion cpp/examples/primal_dual/tv_inpainting.cc
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ int main(int argc, char const **argv) {
SOPT_HIGH_LOG("Create dirty vector");
std::normal_distribution<> gaussian_dist(0, sigma);
Vector y(y0.size());
for (sopt::t_int i = 0; i < y0.size(); i++) y(i) = y0(i) + gaussian_dist(mersenne);
for (sopt::t_int i = 0; i < y0.size(); ++i) y(i) = y0(i) + gaussian_dist(mersenne);
// Write dirty image to file
if (output != "none") {
Vector const dirty = sampling.adjoint() * y;
Expand Down
2 changes: 1 addition & 1 deletion cpp/examples/proximal_admm/inpainting.cc
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@ int main(int argc, char const **argv) {
SOPT_HIGH_LOG("Create dirty vector");
std::normal_distribution<> gaussian_dist(0, sigma);
Vector y(y0.size());
for (sopt::t_int i = 0; i < y0.size(); i++) y(i) = y0(i) + gaussian_dist(mersenne);
for (sopt::t_int i = 0; i < y0.size(); ++i) y(i) = y0(i) + gaussian_dist(mersenne);
// Write dirty imagte to file
if (output != "none") {
Vector const dirty = sampling.adjoint() * y;
Expand Down
2 changes: 1 addition & 1 deletion cpp/examples/proximal_admm/reweighted.cc
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,7 @@ int main(int argc, char const **argv) {
SOPT_MEDIUM_LOG("Create dirty vector");
std::normal_distribution<> gaussian_dist(0, sigma);
Vector y(y0.size());
for (sopt::t_int i = 0; i < y0.size(); i++) y(i) = y0(i) + gaussian_dist(mersenne);
for (sopt::t_int i = 0; i < y0.size(); ++i) y(i) = y0(i) + gaussian_dist(mersenne);
// Write dirty imagte to file
if (output != "none") {
Vector const dirty = sampling.adjoint() * y;
Expand Down
2 changes: 1 addition & 1 deletion cpp/examples/sdmm/inpainting.cc
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@ int main(int argc, char const **argv) {
SOPT_HIGH_LOG("Create dirty vector");
std::normal_distribution<> gaussian_dist(0, sigma);
Vector y(y0.size());
for (sopt::t_int i = 0; i < y0.size(); i++) y(i) = y0(i) + gaussian_dist(mersenne);
for (sopt::t_int i = 0; i < y0.size(); ++i) y(i) = y0(i) + gaussian_dist(mersenne);
// Write dirty imagte to file
if (output != "none") {
Vector const dirty = sampling.adjoint() * y;
Expand Down
2 changes: 1 addition & 1 deletion cpp/examples/sdmm/reweighted.cc
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ int main(int argc, char const **argv) {
SOPT_HIGH_LOG("Create dirty vector");
std::normal_distribution<> gaussian_dist(0, sigma);
Vector y(y0.size());
for (sopt::t_int i = 0; i < y0.size(); i++) y(i) = y0(i) + gaussian_dist(mersenne);
for (sopt::t_int i = 0; i < y0.size(); ++i) y(i) = y0(i) + gaussian_dist(mersenne);
// Write dirty imagte to file
if (output != "none") {
Vector const dirty = sampling.adjoint() * y;
Expand Down
6 changes: 3 additions & 3 deletions cpp/sopt/chained_operators.h
Original file line number Diff line number Diff line change
Expand Up @@ -23,12 +23,12 @@ OperatorFunction<T0> chained_operators(OperatorFunction<T0> const &arg0, T const
(*first)(output, input);
else {
(*first)(*buffer, input);
first++;
++first;
(*first)(output, *buffer);
}
for (++first; first != last; first++) {
for (++first; first != last; ++first) {
(*first)(*buffer, output);
first++;
++first;
(*first)(output, *buffer);
}
};
Expand Down
2 changes: 1 addition & 1 deletion cpp/sopt/cppflow_utils.cc
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,7 @@ namespace cppflowutils {
cppflow::tensor convert_image_to_tensor(sopt::Vector<std::complex<double>> const &image, int image_rows, int image_cols) {

std::vector<float> input_values(image_rows);
for(int i = 0; i < image_rows; i++)
for(int i = 0; i < image_rows; ++i)
{
if(std::abs(image(i).real()) > cppflowutils::imaginary_threshold)
{
Expand Down
4 changes: 2 additions & 2 deletions cpp/sopt/credible_region.h
Original file line number Diff line number Diff line change
Expand Up @@ -145,8 +145,8 @@ credible_interval_grid(const Eigen::MatrixBase<T> &solution, const t_uint &rows,
Image<K> credible_grid_upper_bound = Image<K>::Zero(grid_rows, grid_cols);
Image<K> credible_grid_mean = Image<K>::Zero(grid_rows, grid_cols);
SOPT_LOW_LOG("Starting calculation of credible interval: {} x {} grid.", grid_rows, grid_cols);
for (t_uint i = 0; i < grid_rows; i++) {
for (t_uint j = 0; j < grid_cols; j++) {
for (t_uint i = 0; i < grid_rows; ++i) {
for (t_uint j = 0; j < grid_cols; ++j) {
const t_uint start_row = i * drow;
const t_uint start_col = j * dcol;
if (static_cast<t_int>(rows - start_row - drow) < 0)
Expand Down
8 changes: 4 additions & 4 deletions cpp/sopt/gradient_operator.h
Original file line number Diff line number Diff line change
Expand Up @@ -28,9 +28,9 @@ template <class T>
Vector<T> diff2d(const Vector<T> &x, const t_int rows, const t_int cols) {
Matrix<T> output = Matrix<T>::Zero(rows, 2 * cols);
const Matrix<T> &input_image = Matrix<T>::Map(x.data(), rows, cols);
for (Eigen::Index i(0); i < rows; i++)
for (Eigen::Index i(0); i < rows; ++i)
output.block(0, 0, rows, cols).row(i) = diff<T>(input_image.row(i));
for (Eigen::Index i(0); i < cols; i++)
for (Eigen::Index i(0); i < cols; ++i)
output.block(0, cols, rows, cols).col(i) = diff<T>(input_image.col(i));
return Vector<T>::Map(output.data(), output.size());
}
Expand All @@ -39,9 +39,9 @@ template <class T>
Vector<T> diff2d_adjoint(const Vector<T> &x, const t_int rows, const t_int cols) {
const Matrix<T> &input_image = Matrix<T>::Map(x.data(), rows, 2 * cols);
Matrix<T> output = Matrix<T>::Zero(rows, cols);
for (Eigen::Index i(0); i < rows; i++)
for (Eigen::Index i(0); i < rows; ++i)
output.row(i) += diff_adjoint<T>(input_image.block(0, 0, rows, cols).row(i));
for (Eigen::Index i(0); i < cols; i++)
for (Eigen::Index i(0); i < cols; ++i)
output.col(i) += diff_adjoint<T>(input_image.block(0, cols, rows, cols).col(i));
return Vector<T>::Map(output.data(), output.size());
}
Expand Down
2 changes: 1 addition & 1 deletion cpp/sopt/imaging_primal_dual.h
Original file line number Diff line number Diff line change
Expand Up @@ -318,7 +318,7 @@ typename ImagingPrimalDual<SCALAR>::Diagnostic ImagingPrimalDual<SCALAR>::operat
auto const g_proximal = [this](t_Vector &out, Real gamma, t_Vector const &x) {
this->l2ball_proximal()(out, gamma, x);
// applying preconditioning
for (t_int i = 0; i < this->precondition_iters(); i++)
for (t_int i = 0; i < this->precondition_iters(); ++i)
this->l2ball_proximal()(
out, gamma,
out - this->precondition_stepsize() *
Expand Down
2 changes: 1 addition & 1 deletion cpp/sopt/joint_map.h
Original file line number Diff line number Diff line change
Expand Up @@ -104,7 +104,7 @@ class JointMAP {
typedef typename ALGORITHM::DiagnosticAndResult ResultType;
ResultType result = (*(this->algo_ptr_))(std::forward<ARGS>(args)...);
t_real gamma = 0;
niters++;
++niters;
t_uint algo_iters(result.niters);
for (; (not converged) && (niters < itermax()); ++niters) {
SOPT_LOW_LOG(" - [JMAP] Iteration {}/{}", niters, itermax());
Expand Down
2 changes: 1 addition & 1 deletion cpp/sopt/l2_primal_dual.h
Original file line number Diff line number Diff line change
Expand Up @@ -317,7 +317,7 @@ typename ImagingPrimalDual<SCALAR>::Diagnostic ImagingPrimalDual<SCALAR>::operat
auto const g_proximal = [this](t_Vector &out, Real gamma, t_Vector const &x) {
this->l2ball_proximal()(out, gamma, x);
// applying preconditioning
for (t_int i = 0; i < this->precondition_iters(); i++)
for (t_int i = 0; i < this->precondition_iters(); ++i)
this->l2ball_proximal()(
out, gamma,
out - this->precondition_stepsize() *
Expand Down
4 changes: 2 additions & 2 deletions cpp/sopt/mpi/communicator.h
Original file line number Diff line number Diff line change
Expand Up @@ -334,7 +334,7 @@ Communicator::all_to_allv(const std::vector<T> &vec, std::vector<t_int> const &s
return vec;
}
std::vector<t_int> rec_sizes(send_sizes.size(), 0);
for (t_int i = 0; i < size(); i++) {
for (t_int i = 0; i < size(); ++i) {
if (i == rank())
rec_sizes = gather<t_int>(send_sizes[i], i);
else
Expand Down Expand Up @@ -383,7 +383,7 @@ typename std::enable_if<is_registered_type<T>::value, Vector<T>>::type Communica
return vec;
}
std::vector<t_int> rec_sizes(send_sizes.size(), 0);
for (t_int i = 0; i < size(); i++) {
for (t_int i = 0; i < size(); ++i) {
if (i == rank())
rec_sizes = gather<t_int>(send_sizes[i], i);
else
Expand Down
4 changes: 2 additions & 2 deletions cpp/sopt/proximal.h
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@ void tv_norm(Eigen::DenseBase<T0> &out, typename real_type<typename T0::Scalar>:
typename T1::PlainObject const &u = x.segment(0, size);
typename T1::PlainObject const &v = x.segment(size, size);
out = T0::Zero(size * 2);
for (typename Eigen::Index i(0); i < size; i++) {
for (typename Eigen::Index i(0); i < size; ++i) {
const t_real norm = std::sqrt(std::abs(u(i) * u(i) + v(i) * v(i)));
if (norm > gamma) {
out(i) = (1 - gamma / norm) * u(i);
Expand All @@ -119,7 +119,7 @@ void tv_norm(Eigen::DenseBase<T0> &out, Eigen::DenseBase<T2> const &gamma,
typename T1::PlainObject const &u = x.segment(0, size);
typename T1::PlainObject const &v = x.segment(size, size);
out = T0::Zero(size * 2);
for (typename Eigen::Index i(0); i < size; i++) {
for (typename Eigen::Index i(0); i < size; ++i) {
const t_real norm = std::sqrt(std::abs(u(i) * u(i) + v(i) * v(i)));
if (norm > gamma(i)) {
out(i) = (1 - gamma(i) / norm) * u(i);
Expand Down
2 changes: 1 addition & 1 deletion cpp/sopt/sdmm.h
Original file line number Diff line number Diff line change
Expand Up @@ -275,7 +275,7 @@ void SDMM<SCALAR>::update_directions(t_Vectors &y, t_Vectors &z, t_Vector const
template <class SCALAR>
void SDMM<SCALAR>::initialization(t_Vectors &y, t_Vectors &z, t_Vector const &x) const {
SOPT_TRACE("Initializing SDMM");
for (t_uint i(0); i < transforms().size(); i++) {
for (t_uint i(0); i < transforms().size(); ++i) {
y[i] = transforms(i) * x;
z[i].resize(y[i].size());
z[i].fill(0);
Expand Down
2 changes: 1 addition & 1 deletion cpp/sopt/tf_g_proximal.h
Original file line number Diff line number Diff line change
Expand Up @@ -106,7 +106,7 @@ class TFGProximal : public GProximal<SCALAR> {
// https://stackoverflow.com/questions/3786360/confusing-template-error
auto output_vector = model_output[0].template get_data<float>();

for(int i = 0; i < image_size; i++) {
for(int i = 0; i < image_size; ++i) {
image_out[i] = static_cast<Scalar>(output_vector[i]);
}
}
Expand Down
2 changes: 1 addition & 1 deletion cpp/sopt/tv_primal_dual.h
Original file line number Diff line number Diff line change
Expand Up @@ -316,7 +316,7 @@ typename TVPrimalDual<SCALAR>::Diagnostic TVPrimalDual<SCALAR>::operator()(
auto const g_proximal = [this](t_Vector &out, Real gamma, t_Vector const &x) {
this->l2ball_proximal()(out, gamma, x);
// applying preconditioning
for (t_int i = 0; i < this->precondition_iters(); i++)
for (t_int i = 0; i < this->precondition_iters(); ++i)
this->l2ball_proximal()(
out, gamma,
out - this->precondition_stepsize() *
Expand Down
2 changes: 1 addition & 1 deletion cpp/sopt/wavelets/innards.impl.h
Original file line number Diff line number Diff line change
Expand Up @@ -128,7 +128,7 @@ void up_convolve_sum(Eigen::ArrayBase<T0> &result, Eigen::ArrayBase<T1> const &c
#ifdef SOPT_OPENMP
#pragma omp parallel for
#endif
for (typename T0::Index i = 0; i < result.size() / 2; i++) {
for (typename T0::Index i = 0; i < result.size() / 2; ++i) {
result(2 * i + index_place_even) =
periodic_scalar_product(coeffs.head(Nlow), low_even, i + even_offset) +
periodic_scalar_product(coeffs.tail(Nhigh), high_even, i + even_offset);
Expand Down
6 changes: 3 additions & 3 deletions cpp/tests/communicator.cc
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ TEST_CASE("Creates an mpi communicator") {
auto const result = world.scatter_one(scattered);
REQUIRE(result == world.rank() + 2);
auto const gathered = world.gather(result);
for (decltype(gathered)::size_type i = 0; i < gathered.size(); i++)
for (decltype(gathered)::size_type i = 0; i < gathered.size(); ++i)
CHECK(gathered[i] == scattered[i]);
} else {
auto const result = world.scatter_one<t_int>();
Expand All @@ -76,7 +76,7 @@ TEST_CASE("Creates an mpi communicator") {
Vector<t_int> const sendee = Vector<t_int>::Constant(size(world.rank()), world.rank());
std::vector<t_int> sizes(world.size());
int n(0);
std::generate(sizes.begin(), sizes.end(), [&n, &size]() { return size(n++); });
std::generate(sizes.begin(), sizes.end(), [&n, &size]() { return size(++n); });

auto const result = world.is_root() ? world.gather(sendee, sizes) : world.gather(sendee);
if (world.rank() == world.root_id()) {
Expand Down Expand Up @@ -160,7 +160,7 @@ TEST_CASE("Creates an mpi communicator") {
Vector<t_int>::Constant(std::accumulate(sizes.begin(), sizes.end(), 0), world.rank());
const Vector<t_int> output = world.all_to_allv(sendee, sizes);
t_int sum = 0;
for (t_int i = 0; i < world.size() - 1; i++) {
for (t_int i = 0; i < world.size() - 1; ++i) {
const Vector<t_int> expected = Vector<t_int>::Constant(i + 1, i + 1);
CAPTURE(sum);
CAPTURE(i);
Expand Down
2 changes: 1 addition & 1 deletion cpp/tests/credible_region.cc
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ TEST_CASE("calculating gamma") {
};
const t_Vector x = t_Vector::Random(N);
CHECK(0 == energy_function(x));
for (t_uint i = 1; i < 10; i++) {
for (t_uint i = 1; i < 10; ++i) {
const t_real alpha = 0.9 + i * 0.01;
const t_real gamma = credible_region::compute_energy_upper_bound(alpha, x, energy_function);
CHECK(gamma == Approx(N * (std::sqrt(16 * std::log(3 / (1 - alpha)) / N) + 1)));
Expand Down
4 changes: 2 additions & 2 deletions cpp/tests/gradient_operator.cc
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ TEST_CASE("Gradient Operator") {
Image const image = sopt::notinstalled::read_standard_tiff("cameraman256");
auto const psi = sopt::gradient_operator::gradient_operator<Scalar>(image.rows(), image.cols());
Matrix input = Matrix::Ones(image.rows(), image.cols());
for (Eigen::Index i(0); i < image.rows(); i++) input.row(i) *= static_cast<Scalar>(i);
for (Eigen::Index i(0); i < image.rows(); ++i) input.row(i) *= static_cast<Scalar>(i);
Vector output = psi.adjoint() * Vector::Map(input.data(), input.size());
CAPTURE(output.segment(0, 5));
CAPTURE(output.segment(image.size(), 5));
Expand All @@ -35,7 +35,7 @@ TEST_CASE("Gradient Operator") {
CHECK(output.segment(input.size(), input.size() - 1)
.isApprox(Vector::Constant(0.5, input.size() - 1)));
input = Matrix::Ones(image.rows(), image.cols());
for (Eigen::Index i(0); i < image.cols(); i++) input.col(i) *= static_cast<Scalar>(i);
for (Eigen::Index i(0); i < image.cols(); ++i) input.col(i) *= static_cast<Scalar>(i);
output = psi.adjoint() * Vector::Map(input.data(), input.size());
CAPTURE(output.segment(0, 5));
CAPTURE(output.segment(image.size(), 5));
Expand Down
2 changes: 1 addition & 1 deletion cpp/tests/inpainting.cc
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ TEST_CASE("Inpainting"){

std::normal_distribution<> gaussian_dist(0, sigma);
Vector y(y0.size());
for (sopt::t_int i = 0; i < y0.size(); i++) y(i) = y0(i) + gaussian_dist(*mersenne);
for (sopt::t_int i = 0; i < y0.size(); ++i) y(i) = y0(i) + gaussian_dist(*mersenne);

sopt::t_real const gamma = 18;
sopt::t_real const beta = sigma * sigma * 0.5;
Expand Down
2 changes: 1 addition & 1 deletion cpp/tests/serial_vs_parallel_padmm.cc
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@ TEST_CASE("Parallel vs serial inpainting") {
std::normal_distribution<> gaussian_dist(0, sigma);
Vector y = world.is_root() ? y0 : world.broadcast<Vector>();
if (world.is_root()) {
for (sopt::t_int i = 0; i < y0.size(); i++) y(i) += gaussian_dist(*mersenne);
for (sopt::t_int i = 0; i < y0.size(); ++i) y(i) += gaussian_dist(*mersenne);
world.broadcast(y);
}
if (split_comm.size() > 1) {
Expand Down
2 changes: 1 addition & 1 deletion cpp/tests/tf_inpainting.cc
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ TEST_CASE("Inpainting"){

std::normal_distribution<> gaussian_dist(0, sigma);
Vector y(y0.size());
for (sopt::t_int i = 0; i < y0.size(); i++) y(i) = y0(i) + gaussian_dist(*mersenne);
for (sopt::t_int i = 0; i < y0.size(); ++i) y(i) = y0(i) + gaussian_dist(*mersenne);

sopt::t_real const gamma = 18;
sopt::t_real const beta = sigma * sigma * 0.5;
Expand Down
2 changes: 1 addition & 1 deletion cpp/tests/wavelets.cc
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ void check_round_trip(Eigen::ArrayBase<T0> const &input_, sopt::t_uint db,
}

TEST_CASE("wavelet data") {
for (sopt::t_int num = 1; num < 100; num++) {
for (sopt::t_int num = 1; num < 100; ++num) {
if (num < 39)
REQUIRE(sopt::wavelets::daubechies_data(num).coefficients.size() == 2 * num);
else
Expand Down
2 changes: 1 addition & 1 deletion cpp/tools_for_tests/inpainting.h
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ Vector<T> dirty(sopt::LinearTransform<Vector<T>> const &sampling, sopt::Image<T>
auto const y0 = target(sampling, image);
std::normal_distribution<> gaussian_dist(0, sigma(sampling, image));
Vector<T> y(y0.size());
for (t_int i = 0; i < y0.size(); i++) y(i) = y0(i) + gaussian_dist(mersenne);
for (t_int i = 0; i < y0.size(); ++i) y(i) = y0(i) + gaussian_dist(mersenne);

return y;
}
Expand Down

0 comments on commit d0e2bba

Please sign in to comment.