Skip to content

Commit

Permalink
Add the create_magnetic_allotrope function
Browse files Browse the repository at this point in the history
In order to pass on the magnetic configuration between calculations, the
structure used for the follow-up calculation needs to have the right
magnetic kinds to be able to properly assign the magnetisation to each
site.

Here we add a calculation function that, based on the structure and
magnetic moments, returns a new `StructureData` with the required
magnetic kinds, as well as a `Dict` with the corresponding magnetic
moments for each kind.
  • Loading branch information
mbercx committed Mar 2, 2023
1 parent 146bc57 commit 0b4eacd
Show file tree
Hide file tree
Showing 4 changed files with 342 additions and 0 deletions.
1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,7 @@ aiida-quantumespresso = 'aiida_quantumespresso.cli:cmd_root'
[project.entry-points.'aiida.calculations']
'quantumespresso.cp' = 'aiida_quantumespresso.calculations.cp:CpCalculation'
'quantumespresso.create_kpoints_from_distance' = 'aiida_quantumespresso.calculations.functions.create_kpoints_from_distance:create_kpoints_from_distance'
'quantumespresso.create_magnetic_allotrope' = 'aiida_quantumespresso.calculations.functions.create_magnetic_allotrope:create_magnetic_allotrope'
'quantumespresso.dos' = 'aiida_quantumespresso.calculations.dos:DosCalculation'
'quantumespresso.epw' = 'aiida_quantumespresso.calculations.epw:EpwCalculation'
'quantumespresso.matdyn' = 'aiida_quantumespresso.calculations.matdyn:MatdynCalculation'
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
# -*- coding: utf-8 -*-
"""Create a new magnetic allotrope from the given structure based on the desired magnetic moments."""
from aiida.engine import calcfunction
from aiida.orm import Float
import numpy


@calcfunction
def create_magnetic_allotrope(structure, magnetic_moment_per_site, atol=lambda: Float(5E-1), ztol=lambda: Float(5E-2)):
"""Create a new magnetic allotrope from the given structure based on a list of magnetic moments per site.
To create the new list of kinds, the algorithm loops over all the elements in the structure and makes a list of the
sites with that element and their corresponding magnetic moment. Next, it splits this list in three lists:
* Zero magnetic moments: Any site that has an absolute magnetic moment lower than ``ztol``
* Positive magnetic moments
* Negative magnetic moments
The algorithm then sorts the positive and negative lists from large to small absolute value, and loops over each of
list. New magnetic kinds will be created when the absolute difference between the magnetic moment of the current
kind and the site exceeds ``atol``.
The positive and negative magnetic moments are handled separately to avoid assigning two sites with opposite signs
in their magnetic moment to the same kind and make sure that each kind has the correct magnetic moment, i.e. the
largest magnetic moment in absolute value of the sites corresponding to that kind.
.. important:: the function currently does not support alloys.
:param structure: a `StructureData` instance.
:param magnetic_moment_per_site: list of magnetic moments for each site in the structure.
:param atol: the absolute tolerance on determining if two sites have the same magnetic moment.
:param ztol: threshold for considering a kind to have non-zero magnetic moment.
"""
# pylint: disable=too-many-locals,too-many-branches,too-many-statements
import string

from aiida.orm import Dict, StructureData

if structure.is_alloy:
raise ValueError('Alloys are currently not supported.')

atol = atol.value
rtol = 0 # Relative tolerance used in the ``numpy.is_close()`` calls.
ztol = ztol.value

allotrope = StructureData(cell=structure.cell, pbc=structure.pbc)
allotrope_magnetic_moments = {}

for element in structure.get_symbols_set():

# Filter the sites and magnetic moments on the site element
element_sites, element_magnetic_moments = zip(
*[(site, magnetic_moment)
for site, magnetic_moment in zip(structure.sites, magnetic_moment_per_site)
if site.kind_name.rstrip(string.digits) == element]
)

# Split the sites and their magnetic moments by sign to filter out the sites with magnetic moment lower than
# `ztol`and deal with the positive and negative magnetic moment separately. This is important to avoid assigning
# two sites with opposite signs to the same kind and make sure that each kind has the correct magnetic moment,
# i.e. the largest magnetic moment in absolute value of the sites corresponding to that kind.
zero_sites = []
pos_sites = []
neg_sites = []

for site, magnetic_moment in zip(element_sites, element_magnetic_moments):

if abs(magnetic_moment) <= ztol:
zero_sites.append((site, 0))
elif magnetic_moment > 0:
pos_sites.append((site, magnetic_moment))
else:
neg_sites.append((site, magnetic_moment))

kind_index = -1
kind_names = []
kind_sites = []
kind_magnetic_moments = {}

for site_list in (zero_sites, pos_sites, neg_sites):

if not site_list:
continue

# Sort the site list in order to build the kind lists from large to small absolute magnetic moment.
site_list = sorted(site_list, key=lambda x: abs(x[1]), reverse=True)

sites, magnetic_moments = zip(*site_list)

kind_index += 1
current_kind_name = f'{element}{kind_index}'
kind_sites.append(sites[0])
kind_names.append(current_kind_name)
kind_magnetic_moments[current_kind_name] = magnetic_moments[0]

for site, magnetic_moment in zip(sites[1:], magnetic_moments[1:]):

if not numpy.isclose(magnetic_moment, kind_magnetic_moments[current_kind_name], rtol, atol):
kind_index += 1
current_kind_name = f'{element}{kind_index}'
kind_magnetic_moments[current_kind_name] = magnetic_moment

kind_sites.append(site)
kind_names.append(current_kind_name)

# In case there is only a single kind for the element, remove the 0 kind index
if current_kind_name == f'{element}0':
kind_names = len(element_magnetic_moments) * [element]
kind_magnetic_moments = {element: kind_magnetic_moments[current_kind_name]}

allotrope_magnetic_moments.update(kind_magnetic_moments)

for name, site in zip(kind_names, kind_sites):
allotrope.append_atom(
name=name,
symbols=(element,),
weights=(1.0,),
position=site.position,
)

return {'allotrope': allotrope, 'magnetic_moments': Dict(dict=allotrope_magnetic_moments)}
198 changes: 198 additions & 0 deletions tests/calculations/functions/test_create_magnetic_allotrope.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,198 @@
# -*- coding: utf-8 -*-
"""Tests for the `create_magnetic_allotrope` calculation function."""
import pytest

from aiida.orm import Float, List
from aiida.plugins import CalculationFactory

create_magnetic_allotrope = CalculationFactory('quantumespresso.create_magnetic_allotrope')


@pytest.mark.usefixtures('aiida_profile')
def test_configuration_00(generate_structure_from_kinds):
"""Test `create_magnetic_allotrope` calculation function.
Case: one kind but with equal magnetic moments.
Expected result: no new kind names should be introduced.
"""
kind_names = ['Fe', 'Fe']
magnetic_moments = List(list=[0.2, 0.2])

structure = generate_structure_from_kinds(kind_names)
allotrope, allotrope_magnetic_moments = create_magnetic_allotrope(structure, magnetic_moments).values()

assert set(allotrope.get_kind_names()) == {'Fe', 'Fe'}
assert allotrope_magnetic_moments.get_dict() == {'Fe': 0.2}


@pytest.mark.usefixtures('aiida_profile')
def test_configuration_01(generate_structure_from_kinds):
"""Test `create_magnetic_allotrope` calculation function.
Case: two kinds all with equal magnetic moments.
Expected result: no new kind names should be introduced.
"""
kind_names = ['Fe', 'Fe', 'Ni', 'Ni', 'Ni']
magnetic_moments = List(list=[0.2, 0.2, 0.5, 0.5, 0.5])

structure = generate_structure_from_kinds(kind_names)
allotrope, allotrope_magnetic_moments = create_magnetic_allotrope(structure, magnetic_moments).values()

assert set(allotrope.get_kind_names()) == {'Fe', 'Ni'}
assert allotrope_magnetic_moments.get_dict() == {'Fe': 0.2, 'Ni': 0.5}


@pytest.mark.usefixtures('aiida_profile')
def test_configuration_02(generate_structure_from_kinds):
"""Test `create_magnetic_allotrope` calculation function.
Case: only one kind but with unequal magnetic moments.
Expected result: two new kinds introduced one for each magnetic moment.
"""
kind_names = ['Fe', 'Fe']
magnetic_moments = List(list=[0.2, 1.0])

structure = generate_structure_from_kinds(kind_names)
allotrope, allotrope_magnetic_moments = create_magnetic_allotrope(structure, magnetic_moments).values()

assert set(allotrope.get_kind_names()) == {'Fe0', 'Fe1'}
assert allotrope_magnetic_moments.get_dict() == {'Fe0': 1.0, 'Fe1': 0.2}


@pytest.mark.usefixtures('aiida_profile')
def test_configuration_03(generate_structure_from_kinds):
"""Test `create_magnetic_allotrope` calculation function.
Case: only one kind but with three types of magnetic moments that are not grouped together.
Expected result: two new kinds introduced one for each magnetic moment.
"""
kind_names = ['Fe', 'Fe', 'Fe', 'Fe']
magnetic_moments = List(list=[0.2, 0.8, 1.5, 0.8])

structure = generate_structure_from_kinds(kind_names)
allotrope, allotrope_magnetic_moments = create_magnetic_allotrope(structure, magnetic_moments).values()

assert set(allotrope.get_kind_names()) == {'Fe0', 'Fe1', 'Fe2'}
assert allotrope_magnetic_moments.get_dict() == {'Fe0': 1.5, 'Fe1': 0.8, 'Fe2': 0.2}


@pytest.mark.usefixtures('aiida_profile')
def test_configuration_04(generate_structure_from_kinds):
"""Test `create_magnetic_allotrope` calculation function.
Case: only one kind but with four different values of magnetic moments but middle two are within tolerance.
Expected result: two new kinds introduced one for each magnetic moment.
"""
kind_names = ['Fe', 'Fe', 'Fe', 'Fe']
magnetic_moments = List(list=[0.0, 0.50, 0.45, 0.40])

structure = generate_structure_from_kinds(kind_names)

# Default tolerances: just two different kinds
allotrope, allotrope_magnetic_moments = create_magnetic_allotrope(structure, magnetic_moments).values()
assert set(allotrope.get_kind_names()) == {'Fe0', 'Fe1'}
assert [site.kind_name for site in allotrope.sites] == ['Fe0', 'Fe1', 'Fe1', 'Fe1']
assert allotrope_magnetic_moments.get_dict() == {'Fe0': 0.0, 'Fe1': 0.5}

# Lower atol to 0.05: 0.5 & 0.45 now one kind, 0.4 new kind -> three different kinds
allotrope, allotrope_magnetic_moments = create_magnetic_allotrope(structure, magnetic_moments,
atol=Float(0.05)).values()
assert set(allotrope.get_kind_names()) == {'Fe0', 'Fe1', 'Fe2'}
assert [site.kind_name for site in allotrope.sites] == ['Fe0', 'Fe1', 'Fe1', 'Fe2']
assert allotrope_magnetic_moments.get_dict() == {'Fe0': 0.0, 'Fe1': 0.5, 'Fe2': 0.4}

# Increase atol to 0.1, again only two different kinds
allotrope, allotrope_magnetic_moments = create_magnetic_allotrope(structure, magnetic_moments,
atol=Float(0.1)).values()
assert set(allotrope.get_kind_names()) == {'Fe0', 'Fe1'}
assert [site.kind_name for site in allotrope.sites] == ['Fe0', 'Fe1', 'Fe1', 'Fe1']
assert allotrope_magnetic_moments.get_dict() == {'Fe0': 0.0, 'Fe1': 0.5}

# Really strict tolerance or atol = 0.01: All sites get different kinds
allotrope, allotrope_magnetic_moments = create_magnetic_allotrope(structure, magnetic_moments,
atol=Float(1E-2)).values()
assert set(allotrope.get_kind_names()) == {'Fe0', 'Fe1', 'Fe2', 'Fe3'}
assert [site.kind_name for site in allotrope.sites] == ['Fe0', 'Fe1', 'Fe2', 'Fe3']
assert allotrope_magnetic_moments.get_dict() == {'Fe0': 0.0, 'Fe1': 0.5, 'Fe2': 0.45, 'Fe3': 0.4}


@pytest.mark.usefixtures('aiida_profile')
def test_configuration_05(generate_structure_from_kinds):
"""Test `create_magnetic_allotrope` calculation function.
Case: One kind, only negative magnetic moments with one close to zero
Expected result: Depends on tolerance, see below
"""
kind_names = ['Fe', 'Fe', 'Fe', 'Fe']
magnetic_moments = List(list=[-0.5, -0.6, -1.5, -0.01])

structure = generate_structure_from_kinds(kind_names)

# Default tolerance values, one zero site and two magnetic
allotrope, allotrope_magnetic_moments = create_magnetic_allotrope(structure, magnetic_moments).values()
assert set(allotrope.get_kind_names()) == {'Fe0', 'Fe1', 'Fe2'}
assert [site.kind_name for site in allotrope.sites] == ['Fe0', 'Fe1', 'Fe2', 'Fe2']
assert allotrope_magnetic_moments.get_dict() == {'Fe0': 0.0, 'Fe1': -1.5, 'Fe2': -0.6}

# Strict absolute tolerance, one zero site and three magnetic
allotrope, allotrope_magnetic_moments = create_magnetic_allotrope(structure, magnetic_moments,
atol=Float(0.05)).values()
assert set(allotrope.get_kind_names()) == {'Fe0', 'Fe1', 'Fe2', 'Fe3'}
assert [site.kind_name for site in allotrope.sites] == ['Fe0', 'Fe1', 'Fe2', 'Fe3']
assert allotrope_magnetic_moments.get_dict() == {'Fe0': 0.0, 'Fe1': -1.5, 'Fe2': -0.6, 'Fe3': -0.5}

# Strict absolute and zero tolerance, four magnetic sites
allotrope, allotrope_magnetic_moments = create_magnetic_allotrope(
structure, magnetic_moments, atol=Float(0.05), ztol=Float(1E-3)
).values()
assert set(allotrope.get_kind_names()) == {'Fe0', 'Fe1', 'Fe2', 'Fe3'}
assert [site.kind_name for site in allotrope.sites] == ['Fe0', 'Fe1', 'Fe2', 'Fe3']
assert allotrope_magnetic_moments.get_dict() == {'Fe0': -1.5, 'Fe1': -0.6, 'Fe2': -0.5, 'Fe3': -0.01}


@pytest.mark.usefixtures('aiida_profile')
def test_configuration_06(generate_structure_from_kinds):
"""Test `create_magnetic_allotrope` calculation function.
Case: Two kinds, magnetic moments with different signs for the first (Fe)
Expected result: Depends on tolerance, see below
"""
kind_names = ['Fe', 'Fe', 'Fe', 'Fe', 'Ni', 'Ni']
magnetic_moments = List(list=[-0.1, 0.1, -0.2, 0.01, 0.2, 0.25])

structure = generate_structure_from_kinds(kind_names)

# Default tolerance values, one zero and two magnetic sites for Fe, one magnetic site for Ni
allotrope, allotrope_magnetic_moments = create_magnetic_allotrope(structure, magnetic_moments).values()
assert set(allotrope.get_kind_names()) == {'Fe0', 'Fe1', 'Fe2', 'Ni'}
assert allotrope_magnetic_moments.get_dict() == {'Fe0': 0.0, 'Fe1': 0.1, 'Fe2': -0.2, 'Ni': 0.25}

# Very strict absolute tolerance, all different sites
allotrope, allotrope_magnetic_moments = create_magnetic_allotrope(structure, magnetic_moments,
atol=Float(0.02)).values()
assert set(allotrope.get_kind_names()) == {'Fe0', 'Fe1', 'Fe2', 'Fe3', 'Ni0', 'Ni1'}
assert allotrope_magnetic_moments.get_dict() == {
'Fe0': 0.0,
'Fe1': 0.1,
'Fe2': -0.2,
'Fe3': -0.1,
'Ni0': 0.25,
'Ni1': 0.2
}


@pytest.mark.usefixtures('aiida_profile')
def test_configuration_07(generate_structure_from_kinds):
"""Test `create_magnetic_allotrope` calculation function.
Case: Two different symbols but the same magnetic moment.
Expected result: One kind with name equal to the element symbol
"""
kind_names = ['Fe0', 'Fe1']
magnetic_moments = List(list=[0.1, 0.1])

structure = generate_structure_from_kinds(kind_names)

allotrope, allotrope_magnetic_moments = create_magnetic_allotrope(structure, magnetic_moments).values()
assert set(allotrope.get_kind_names()) == {'Fe'}
assert allotrope_magnetic_moments.get_dict() == {'Fe': 0.1}
22 changes: 22 additions & 0 deletions tests/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -391,6 +391,28 @@ def _generate_structure(structure_id='silicon'):
return _generate_structure


@pytest.fixture
def generate_structure_from_kinds():
"""Return a dummy `StructureData` instance with the specified kind names."""

def _generate_structure_from_kinds(site_kind_names):
"""Return a dummy `StructureData` instance with the specified kind names."""
import re
from aiida import orm

if not isinstance(site_kind_names, (list, tuple)):
site_kind_names = (site_kind_names,)

structure = orm.StructureData(cell=[[1, 0, 0], [0, 1, 0], [0, 0, 1]])

for kind_name in site_kind_names:
structure.append_atom(name=kind_name, symbols=re.sub('[0-9]', '', kind_name), position=(0., 0., 0.))

return structure

return _generate_structure_from_kinds


@pytest.fixture
def generate_kpoints_mesh():
"""Return a `KpointsData` node."""
Expand Down

0 comments on commit 0b4eacd

Please sign in to comment.