Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve definitional behavior of the category of elements #1024

Merged
merged 1 commit into from
Aug 25, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 30 additions & 24 deletions Cubical/Categories/Constructions/Elements.agda
Original file line number Diff line number Diff line change
Expand Up @@ -2,26 +2,32 @@

-- The Category of Elements

open import Cubical.Categories.Category
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Path
open import Cubical.Foundations.Prelude

module Cubical.Categories.Constructions.Elements where
open import Cubical.Data.Sigma

open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Category
import Cubical.Categories.Constructions.Slice.Base as Slice
open import Cubical.Categories.Functor
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Categories.Instances.Sets
open import Cubical.Categories.Isomorphism
import Cubical.Categories.Morphism as Morphism


import Cubical.Categories.Morphism as Morphism
import Cubical.Categories.Constructions.Slice.Base as Slice

module Cubical.Categories.Constructions.Elements where

-- some issues
-- * always need to specify objects during composition because can't infer isSet
open Category
open Functor

module Covariant {ℓ ℓ'} {C : Category ℓ ℓ'} where
getIsSet : ∀ {ℓS} {C : Category ℓ ℓ'} (F : Functor C (SET ℓS)) → (c : C .ob) → isSet (fst (F ⟅ c ⟆))
getIsSet : ∀ {ℓS} (F : Functor C (SET ℓS)) → (c : C .ob) → isSet (fst (F ⟅ c ⟆))
getIsSet F c = snd (F ⟅ c ⟆)

Element : ∀ {ℓS} (F : Functor C (SET ℓS)) → Type (ℓ-max ℓ ℓS)
Expand All @@ -32,45 +38,45 @@ module Covariant {ℓ ℓ'} {C : Category ℓ ℓ'} where
-- objects are (c , x) pairs where c ∈ C and x ∈ F c
(∫ F) .ob = Element F
-- morphisms are f : c → c' which take x to x'
(∫ F) .Hom[_,_] (c , x) (c' , x') = Σ[ f ∈ C [ c , c' ] ] x' ≡ (F ⟪ f ⟫) x
(∫ F) .id {x = (c , x)} = C .id , sym (funExt⁻ (F .F-id) x ∙ refl)
(∫ F) .Hom[_,_] (c , x) (c' , x') = fiber (λ (f : C [ c , c' ]) → (F ⟪ f ⟫) x) x'
(∫ F) .id {x = (c , x)} = C .id , funExt⁻ (F .F-id) x
(∫ F) ._⋆_ {c , x} {c₁ , x₁} {c₂ , x₂} (f , p) (g , q)
= (f ⋆⟨ C ⟩ g) , (x₂
≡⟨ q ⟩
(F ⟪ g ⟫) x₁ -- basically expanding out function composition
≡⟨ cong (F ⟪ g ⟫) p ⟩
= (f ⋆⟨ C ⟩ g) , ((F ⟪ f ⋆⟨ C ⟩ g ⟫) x
≡⟨ funExt⁻ (F .F-seq _ _) _ ⟩
(F ⟪ g ⟫) ((F ⟪ f ⟫) x)
≡⟨ funExt⁻ (sym (F .F-seq _ _)) _ ⟩
(F ⟪ f ⋆⟨ C ⟩ g ⟫) x
≡⟨ cong (F ⟪ g ⟫) p ⟩
(F ⟪ g ⟫) x₁
≡⟨ q ⟩
x₂
∎)
(∫ F) .⋆IdL o@{c , x} o1@{c' , x'} f'@(f , p) i
= (cIdL i) , isOfHLevel→isOfHLevelDep 1 (λ a → isS' x' ((F ⟪ a ⟫) x)) p' p cIdL i
= (cIdL i) , isOfHLevel→isOfHLevelDep 1 (λ a → isS' ((F ⟪ a ⟫) x) x') p' p cIdL i
where
isS = getIsSet F c
isS' = getIsSet F c'
cIdL = C .⋆IdL f

-- proof from composition with id
p' : x' ≡ (F ⟪ C .id ⋆⟨ C ⟩ f ⟫) x
p' : (F ⟪ C .id ⋆⟨ C ⟩ f ⟫) x ≡ x'
p' = snd ((∫ F) ._⋆_ ((∫ F) .id) f')
(∫ F) .⋆IdR o@{c , x} o1@{c' , x'} f'@(f , p) i
= (cIdR i) , isOfHLevel→isOfHLevelDep 1 (λ a → isS' x' ((F ⟪ a ⟫) x)) p' p cIdR i
= (cIdR i) , isOfHLevel→isOfHLevelDep 1 (λ a → isS' ((F ⟪ a ⟫) x) x') p' p cIdR i
where
cIdR = C .⋆IdR f
isS' = getIsSet F c'

p' : x' ≡ (F ⟪ f ⋆⟨ C ⟩ C .id ⟫) x
p' : (F ⟪ f ⋆⟨ C ⟩ C .id ⟫) x ≡ x'
p' = snd ((∫ F) ._⋆_ f' ((∫ F) .id))
(∫ F) .⋆Assoc o@{c , x} o1@{c₁ , x₁} o2@{c₂ , x₂} o3@{c₃ , x₃} f'@(f , p) g'@(g , q) h'@(h , r) i
= (cAssoc i) , isOfHLevel→isOfHLevelDep 1 (λ a → isS₃ x₃ ((F ⟪ a ⟫) x)) p1 p2 cAssoc i
= (cAssoc i) , isOfHLevel→isOfHLevelDep 1 (λ a → isS₃ ((F ⟪ a ⟫) x) x₃) p1 p2 cAssoc i
where
cAssoc = C .⋆Assoc f g h
isS₃ = getIsSet F c₃

p1 : x₃ ≡ (F ⟪ (f ⋆⟨ C ⟩ g) ⋆⟨ C ⟩ h ⟫) x
p1 : (F ⟪ (f ⋆⟨ C ⟩ g) ⋆⟨ C ⟩ h ⟫) x ≡ x₃
p1 = snd ((∫ F) ._⋆_ ((∫ F) ._⋆_ {o} {o1} {o2} f' g') h')

p2 : x₃ ≡ (F ⟪ f ⋆⟨ C ⟩ (g ⋆⟨ C ⟩ h) ⟫) x
p2 : (F ⟪ f ⋆⟨ C ⟩ (g ⋆⟨ C ⟩ h) ⟫) x ≡ x₃
p2 = snd ((∫ F) ._⋆_ f' ((∫ F) ._⋆_ {o1} {o2} {o3} g' h'))
(∫ F) .isSetHom {x} {y} = isSetΣSndProp (C .isSetHom) λ _ → (F ⟅ fst y ⟆) .snd _ _

Expand Down
4 changes: 2 additions & 2 deletions Cubical/Categories/Constructions/Slice/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -31,13 +31,13 @@ open WeakInverse

slice→el : Functor (SliceCat C c) (∫ᴾ (C [-, c ]))
slice→el .F-ob s = s .S-ob , s .S-arr
slice→el .F-hom f = f .S-hom , sym (f .S-comm)
slice→el .F-hom f = f .S-hom , f .S-comm
slice→el .F-id = ΣPathP (refl , (isOfHLevelPath' 1 (C .isSetHom) _ _ _ _))
slice→el .F-seq _ _ = ΣPathP (refl , (isOfHLevelPath' 1 (C .isSetHom) _ _ _ _))

el→slice : Functor (∫ᴾ (C [-, c ])) (SliceCat C c)
el→slice .F-ob (_ , s) = sliceob s
el→slice .F-hom (f , comm) = slicehom f (sym comm)
el→slice .F-hom (f , comm) = slicehom f comm
el→slice .F-id = SliceHom-≡-intro C c refl (isOfHLevelPath' 1 (C .isSetHom) _ _ _ _)
el→slice .F-seq _ _ = SliceHom-≡-intro C c refl (isOfHLevelPath' 1 (C .isSetHom) _ _ _ _)

Expand Down
7 changes: 4 additions & 3 deletions Cubical/Categories/Presheaf/Morphism.agda
Original file line number Diff line number Diff line change
Expand Up @@ -63,12 +63,13 @@ module _ {C : Category ℓc ℓc'}{D : Category ℓd ℓd'}

pushEltF : Functor (∫ᴾ_ {C = C} P) (∫ᴾ_ {C = D} Q)
pushEltF .F-ob = pushElt
pushEltF .F-hom {x}{y} (f , commutes) = F .F-hom f , sym (
pushEltF .F-hom {x}{y} (f , commutes) .fst = F .F-hom f
pushEltF .F-hom {x}{y} (f , commutes) .snd =
pushElt _ .snd ∘ᴾ⟨ D , Q ⟩ F .F-hom f
≡⟨ pushEltNat y f ⟩
pushElt (_ , y .snd ∘ᴾ⟨ C , P ⟩ f) .snd
≡⟨ cong (λ a → pushElt a .snd) (ΣPathP (refl , (sym commutes))) ⟩
pushElt x .snd ∎)
≡⟨ cong (λ a → pushElt a .snd) (ΣPathP (refl , commutes)) ⟩
pushElt x .snd ∎
pushEltF .F-id = Σ≡Prop (λ x → (Q ⟅ _ ⟆) .snd _ _) (F .F-id)
pushEltF .F-seq f g =
Σ≡Prop ((λ x → (Q ⟅ _ ⟆) .snd _ _)) (F .F-seq (f .fst) (g .fst))
Expand Down
8 changes: 4 additions & 4 deletions Cubical/Categories/Presheaf/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ module _ {ℓS : Level} (C : Category ℓ ℓ') (F : Functor (C ^op) (SET ℓS))
(F ⟪ h ⟫) ((ϕ ⟦ d ⟧) b)
≡[ i ]⟨ (F ⟪ h ⟫) (eq i) ⟩
(F ⟪ h ⟫) y
≡⟨ sym com ⟩
≡⟨ com ⟩
x
∎)
-- functoriality follows from functoriality of A
Expand Down Expand Up @@ -153,7 +153,7 @@ module _ {ℓS : Level} (C : Category ℓ ℓ') (F : Functor (C ^op) (SET ℓS))
rightEq = left ▷ right
where
-- the id morphism in (∫ᴾ F)
∫id = C .id , sym (funExt⁻ (F .F-id) x ∙ refl)
∫id = C .id , funExt⁻ (F .F-id) x

-- functoriality of P gives us close to what we want
right : (P ⟪ ∫id ⟫) X ≡ X
Expand Down Expand Up @@ -326,8 +326,8 @@ module _ {ℓS : Level} (C : Category ℓ ℓ') (F : Functor (C ^op) (SET ℓS))
right : PathP (λ i → fst (P ⟅ d , eq' i ⟆)) ((P ⟪ f , refl ⟫) X') ((P ⟪ f , comm ⟫) (subst _ eq X'))
right i = (P ⟪ f , refl≡comm i ⟫) (X'≡subst i)
where
refl≡comm : PathP (λ i → (eq' i) ≡ (F ⟪ f ⟫) (eq i)) refl comm
refl≡comm = isOfHLevel→isOfHLevelDep 1 (λ (v , w) → snd (F ⟅ d ⟆) v ((F ⟪ f ⟫) w)) refl comm λ i → (eq' i , eq i)
refl≡comm : PathP (λ i → (F ⟪ f ⟫) (eq i) ≡ (eq' i)) refl comm
refl≡comm = isOfHLevel→isOfHLevelDep 1 (λ (v , w) → snd (F ⟅ d ⟆) ((F ⟪ f ⟫) w) v) refl comm λ i → (eq' i , eq i)

X'≡subst : PathP (λ i → fst (P ⟅ c , eq i ⟆)) X' (subst _ eq X')
X'≡subst = transport-filler (λ i → fst (P ⟅ c , eq i ⟆)) X'
Expand Down
8 changes: 4 additions & 4 deletions Cubical/Categories/Presheaf/Representable.agda
Original file line number Diff line number Diff line change
Expand Up @@ -150,10 +150,10 @@ module _ {ℓo}{ℓh}{ℓp} (C : Category ℓo ℓh) (P : Presheaf C ℓp) where
isTerminalToIsUniversal {η} term A .equiv-proof ϕ .fst .fst =
term (_ , ϕ) .fst .fst
isTerminalToIsUniversal {η} term A .equiv-proof ϕ .fst .snd =
sym (term (_ , ϕ) .fst .snd)
term (_ , ϕ) .fst .snd
isTerminalToIsUniversal {η} term A .equiv-proof ϕ .snd (f , commutes) =
Σ≡Prop (λ _ → (P ⟅ A ⟆) .snd _ _)
(cong fst (term (A , ϕ) .snd (f , sym commutes)))
(cong fst (term (A , ϕ) .snd (f , commutes)))

isUniversalToIsTerminal :
∀ (vertex : C .ob) (element : (P ⟅ vertex ⟆) .fst)
Expand All @@ -162,11 +162,11 @@ module _ {ℓo}{ℓh}{ℓp} (C : Category ℓo ℓh) (P : Presheaf C ℓp) where
isUniversalToIsTerminal vertex element universal ϕ .fst .fst =
universal _ .equiv-proof (ϕ .snd) .fst .fst
isUniversalToIsTerminal vertex element universal ϕ .fst .snd =
sym (universal _ .equiv-proof (ϕ .snd) .fst .snd)
universal _ .equiv-proof (ϕ .snd) .fst .snd
isUniversalToIsTerminal vertex element universal ϕ .snd (f , commutes) =
Σ≡Prop
(λ _ → (P ⟅ _ ⟆) .snd _ _)
(cong fst (universal _ .equiv-proof (ϕ .snd) .snd (f , sym commutes)))
(cong fst (universal _ .equiv-proof (ϕ .snd) .snd (f , commutes)))

terminalElementToUniversalElement : TerminalElement → UniversalElement
terminalElementToUniversalElement η .vertex = η .fst .fst
Expand Down