-
Notifications
You must be signed in to change notification settings - Fork 239
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Pointwise `Algebra` * temporary commit * better `CHANGELOG` entry? * begin removing redundant `module` implementation * finish removing redundant `module` implementation * make `liftRel` implicitly quantified
- Loading branch information
1 parent
4692b0a
commit e25f9d8
Showing
2 changed files
with
190 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,184 @@ | ||
------------------------------------------------------------------------ | ||
-- The Agda standard library | ||
-- | ||
-- For each `IsX` algebraic structure `S`, lift the structure to the | ||
-- 'pointwise' function space `A → S`: categorically, this is the | ||
-- *power* object in the relevant category of `X` objects and morphisms | ||
-- | ||
-- NB the module is parametrised only wrt `A` | ||
------------------------------------------------------------------------ | ||
|
||
{-# OPTIONS --cubical-compatible --safe #-} | ||
|
||
module Algebra.Construct.Pointwise {a} (A : Set a) where | ||
|
||
open import Algebra.Bundles | ||
open import Algebra.Core using (Op₁; Op₂) | ||
open import Algebra.Structures | ||
open import Data.Product.Base using (_,_) | ||
open import Function.Base using (id; _∘′_; const) | ||
open import Level | ||
open import Relation.Binary.Core using (Rel) | ||
open import Relation.Binary.Bundles using (Setoid) | ||
open import Relation.Binary.Structures using (IsEquivalence) | ||
|
||
|
||
private | ||
|
||
variable | ||
c ℓ : Level | ||
C : Set c | ||
_≈_ : Rel C ℓ | ||
ε 0# 1# : C | ||
_⁻¹ -_ : Op₁ C | ||
_∙_ _+_ _*_ : Op₂ C | ||
|
||
lift₀ : C → A → C | ||
lift₀ = const | ||
|
||
lift₁ : Op₁ C → Op₁ (A → C) | ||
lift₁ = _∘′_ | ||
|
||
lift₂ : Op₂ C → Op₂ (A → C) | ||
lift₂ _∙_ g h x = (g x) ∙ (h x) | ||
|
||
liftRel : Rel C ℓ → Rel (A → C) (a ⊔ ℓ) | ||
liftRel _≈_ g h = ∀ {x} → (g x) ≈ (h x) | ||
|
||
|
||
------------------------------------------------------------------------ | ||
-- Setoid structure: here rather than elsewhere? (could be imported?) | ||
|
||
isEquivalence : IsEquivalence _≈_ → IsEquivalence (liftRel _≈_) | ||
isEquivalence isEquivalence = record | ||
{ refl = λ {f x} → refl {f x} | ||
; sym = λ f≈g → sym f≈g | ||
; trans = λ f≈g g≈h → trans f≈g g≈h | ||
} | ||
where open IsEquivalence isEquivalence | ||
|
||
------------------------------------------------------------------------ | ||
-- Structures | ||
|
||
isMagma : IsMagma _≈_ _∙_ → IsMagma (liftRel _≈_) (lift₂ _∙_) | ||
isMagma isMagma = record | ||
{ isEquivalence = isEquivalence M.isEquivalence | ||
; ∙-cong = λ g h → M.∙-cong g h | ||
} | ||
where module M = IsMagma isMagma | ||
|
||
isSemigroup : IsSemigroup _≈_ _∙_ → IsSemigroup (liftRel _≈_) (lift₂ _∙_) | ||
isSemigroup isSemigroup = record | ||
{ isMagma = isMagma M.isMagma | ||
; assoc = λ f g h → M.assoc (f _) (g _) (h _) | ||
} | ||
where module M = IsSemigroup isSemigroup | ||
|
||
isBand : IsBand _≈_ _∙_ → IsBand (liftRel _≈_) (lift₂ _∙_) | ||
isBand isBand = record | ||
{ isSemigroup = isSemigroup M.isSemigroup | ||
; idem = λ f → M.idem (f _) | ||
} | ||
where module M = IsBand isBand | ||
|
||
isCommutativeSemigroup : IsCommutativeSemigroup _≈_ _∙_ → | ||
IsCommutativeSemigroup (liftRel _≈_) (lift₂ _∙_) | ||
isCommutativeSemigroup isCommutativeSemigroup = record | ||
{ isSemigroup = isSemigroup M.isSemigroup | ||
; comm = λ f g → M.comm (f _) (g _) | ||
} | ||
where module M = IsCommutativeSemigroup isCommutativeSemigroup | ||
|
||
isMonoid : IsMonoid _≈_ _∙_ ε → IsMonoid (liftRel _≈_) (lift₂ _∙_) (lift₀ ε) | ||
isMonoid isMonoid = record | ||
{ isSemigroup = isSemigroup M.isSemigroup | ||
; identity = (λ f → M.identityˡ (f _)) , λ f → M.identityʳ (f _) | ||
} | ||
where module M = IsMonoid isMonoid | ||
|
||
isCommutativeMonoid : IsCommutativeMonoid _≈_ _∙_ ε → | ||
IsCommutativeMonoid (liftRel _≈_) (lift₂ _∙_) (lift₀ ε) | ||
isCommutativeMonoid isCommutativeMonoid = record | ||
{ isMonoid = isMonoid M.isMonoid | ||
; comm = λ f g → M.comm (f _) (g _) | ||
} | ||
where module M = IsCommutativeMonoid isCommutativeMonoid | ||
|
||
isGroup : IsGroup _≈_ _∙_ ε _⁻¹ → | ||
IsGroup (liftRel _≈_) (lift₂ _∙_) (lift₀ ε) (lift₁ _⁻¹) | ||
isGroup isGroup = record | ||
{ isMonoid = isMonoid M.isMonoid | ||
; inverse = (λ f → M.inverseˡ (f _)) , λ f → M.inverseʳ (f _) | ||
; ⁻¹-cong = λ f → M.⁻¹-cong f | ||
} | ||
where module M = IsGroup isGroup | ||
|
||
isAbelianGroup : IsAbelianGroup _≈_ _∙_ ε _⁻¹ → | ||
IsAbelianGroup (liftRel _≈_) (lift₂ _∙_) (lift₀ ε) (lift₁ _⁻¹) | ||
isAbelianGroup isAbelianGroup = record | ||
{ isGroup = isGroup M.isGroup | ||
; comm = λ f g → M.comm (f _) (g _) | ||
} | ||
where module M = IsAbelianGroup isAbelianGroup | ||
|
||
isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero _≈_ _+_ _*_ 0# 1# → | ||
IsSemiringWithoutAnnihilatingZero (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#) | ||
isSemiringWithoutAnnihilatingZero isSemiringWithoutAnnihilatingZero = record | ||
{ +-isCommutativeMonoid = isCommutativeMonoid M.+-isCommutativeMonoid | ||
; *-cong = λ g h → M.*-cong g h | ||
; *-assoc = λ f g h → M.*-assoc (f _) (g _) (h _) | ||
; *-identity = (λ f → M.*-identityˡ (f _)) , λ f → M.*-identityʳ (f _) | ||
; distrib = (λ f g h → M.distribˡ (f _) (g _) (h _)) , λ f g h → M.distribʳ (f _) (g _) (h _) | ||
} | ||
where module M = IsSemiringWithoutAnnihilatingZero isSemiringWithoutAnnihilatingZero | ||
|
||
isSemiring : IsSemiring _≈_ _+_ _*_ 0# 1# → | ||
IsSemiring (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#) | ||
isSemiring isSemiring = record | ||
{ isSemiringWithoutAnnihilatingZero = isSemiringWithoutAnnihilatingZero M.isSemiringWithoutAnnihilatingZero | ||
; zero = (λ f → M.zeroˡ (f _)) , λ f → M.zeroʳ (f _) | ||
} | ||
where module M = IsSemiring isSemiring | ||
|
||
isRing : IsRing _≈_ _+_ _*_ -_ 0# 1# → | ||
IsRing (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₁ -_) (lift₀ 0#) (lift₀ 1#) | ||
isRing isRing = record | ||
{ +-isAbelianGroup = isAbelianGroup M.+-isAbelianGroup | ||
; *-cong = λ g h → M.*-cong g h | ||
; *-assoc = λ f g h → M.*-assoc (f _) (g _) (h _) | ||
; *-identity = (λ f → M.*-identityˡ (f _)) , λ f → M.*-identityʳ (f _) | ||
; distrib = (λ f g h → M.distribˡ (f _) (g _) (h _)) , λ f g h → M.distribʳ (f _) (g _) (h _) | ||
} | ||
where module M = IsRing isRing | ||
|
||
|
||
------------------------------------------------------------------------ | ||
-- Bundles | ||
|
||
magma : Magma c ℓ → Magma (a ⊔ c) (a ⊔ ℓ) | ||
magma m = record { isMagma = isMagma (Magma.isMagma m) } | ||
|
||
semigroup : Semigroup c ℓ → Semigroup (a ⊔ c) (a ⊔ ℓ) | ||
semigroup m = record { isSemigroup = isSemigroup (Semigroup.isSemigroup m) } | ||
|
||
band : Band c ℓ → Band (a ⊔ c) (a ⊔ ℓ) | ||
band m = record { isBand = isBand (Band.isBand m) } | ||
|
||
commutativeSemigroup : CommutativeSemigroup c ℓ → CommutativeSemigroup (a ⊔ c) (a ⊔ ℓ) | ||
commutativeSemigroup m = record { isCommutativeSemigroup = isCommutativeSemigroup (CommutativeSemigroup.isCommutativeSemigroup m) } | ||
|
||
monoid : Monoid c ℓ → Monoid (a ⊔ c) (a ⊔ ℓ) | ||
monoid m = record { isMonoid = isMonoid (Monoid.isMonoid m) } | ||
|
||
group : Group c ℓ → Group (a ⊔ c) (a ⊔ ℓ) | ||
group m = record { isGroup = isGroup (Group.isGroup m) } | ||
|
||
abelianGroup : AbelianGroup c ℓ → AbelianGroup (a ⊔ c) (a ⊔ ℓ) | ||
abelianGroup m = record { isAbelianGroup = isAbelianGroup (AbelianGroup.isAbelianGroup m) } | ||
|
||
semiring : Semiring c ℓ → Semiring (a ⊔ c) (a ⊔ ℓ) | ||
semiring m = record { isSemiring = isSemiring (Semiring.isSemiring m) } | ||
|
||
ring : Ring c ℓ → Ring (a ⊔ c) (a ⊔ ℓ) | ||
ring m = record { isRing = isRing (Ring.isRing m) } | ||
|