Skip to content

Commit

Permalink
Pointwise Algebra (#2381)
Browse files Browse the repository at this point in the history
* Pointwise `Algebra`

* temporary commit

* better `CHANGELOG` entry?

* begin removing redundant `module` implementation

* finish removing redundant `module` implementation

* make `liftRel` implicitly quantified
  • Loading branch information
jamesmckinna authored May 15, 2024
1 parent 4692b0a commit e25f9d8
Show file tree
Hide file tree
Showing 2 changed files with 190 additions and 0 deletions.
6 changes: 6 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -78,6 +78,12 @@ Deprecated names
New modules
-----------

* Pointwise lifting of algebraic structures `IsX` and bundles `X` from
carrier set `C` to function space `A → C`:
```
Algebra.Construct.Pointwise
```

* Raw bundles for module-like algebraic structures:
```
Algebra.Module.Bundles.Raw
Expand Down
184 changes: 184 additions & 0 deletions src/Algebra/Construct/Pointwise.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
------------------------------------------------------------------------
-- The Agda standard library
--
-- For each `IsX` algebraic structure `S`, lift the structure to the
-- 'pointwise' function space `A → S`: categorically, this is the
-- *power* object in the relevant category of `X` objects and morphisms
--
-- NB the module is parametrised only wrt `A`
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Algebra.Construct.Pointwise {a} (A : Set a) where

open import Algebra.Bundles
open import Algebra.Core using (Op₁; Op₂)
open import Algebra.Structures
open import Data.Product.Base using (_,_)
open import Function.Base using (id; _∘′_; const)
open import Level
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.Structures using (IsEquivalence)


private

variable
c ℓ : Level
C : Set c
_≈_ : Rel C ℓ
ε 0# 1# : C
_⁻¹ -_ : Op₁ C
_∙_ _+_ _*_ : Op₂ C

lift₀ : C A C
lift₀ = const

lift₁ : Op₁ C Op₁ (A C)
lift₁ = _∘′_

lift₂ : Op₂ C Op₂ (A C)
lift₂ _∙_ g h x = (g x) ∙ (h x)

liftRel : Rel C ℓ Rel (A C) (a ⊔ ℓ)
liftRel _≈_ g h = {x} (g x) ≈ (h x)


------------------------------------------------------------------------
-- Setoid structure: here rather than elsewhere? (could be imported?)

isEquivalence : IsEquivalence _≈_ IsEquivalence (liftRel _≈_)
isEquivalence isEquivalence = record
{ refl = λ {f x} refl {f x}
; sym = λ f≈g sym f≈g
; trans = λ f≈g g≈h trans f≈g g≈h
}
where open IsEquivalence isEquivalence

------------------------------------------------------------------------
-- Structures

isMagma : IsMagma _≈_ _∙_ IsMagma (liftRel _≈_) (lift₂ _∙_)
isMagma isMagma = record
{ isEquivalence = isEquivalence M.isEquivalence
; ∙-cong = λ g h M.∙-cong g h
}
where module M = IsMagma isMagma

isSemigroup : IsSemigroup _≈_ _∙_ IsSemigroup (liftRel _≈_) (lift₂ _∙_)
isSemigroup isSemigroup = record
{ isMagma = isMagma M.isMagma
; assoc = λ f g h M.assoc (f _) (g _) (h _)
}
where module M = IsSemigroup isSemigroup

isBand : IsBand _≈_ _∙_ IsBand (liftRel _≈_) (lift₂ _∙_)
isBand isBand = record
{ isSemigroup = isSemigroup M.isSemigroup
; idem = λ f M.idem (f _)
}
where module M = IsBand isBand

isCommutativeSemigroup : IsCommutativeSemigroup _≈_ _∙_
IsCommutativeSemigroup (liftRel _≈_) (lift₂ _∙_)
isCommutativeSemigroup isCommutativeSemigroup = record
{ isSemigroup = isSemigroup M.isSemigroup
; comm = λ f g M.comm (f _) (g _)
}
where module M = IsCommutativeSemigroup isCommutativeSemigroup

isMonoid : IsMonoid _≈_ _∙_ ε IsMonoid (liftRel _≈_) (lift₂ _∙_) (lift₀ ε)
isMonoid isMonoid = record
{ isSemigroup = isSemigroup M.isSemigroup
; identity = (λ f M.identityˡ (f _)) , λ f M.identityʳ (f _)
}
where module M = IsMonoid isMonoid

isCommutativeMonoid : IsCommutativeMonoid _≈_ _∙_ ε
IsCommutativeMonoid (liftRel _≈_) (lift₂ _∙_) (lift₀ ε)
isCommutativeMonoid isCommutativeMonoid = record
{ isMonoid = isMonoid M.isMonoid
; comm = λ f g M.comm (f _) (g _)
}
where module M = IsCommutativeMonoid isCommutativeMonoid

isGroup : IsGroup _≈_ _∙_ ε _⁻¹
IsGroup (liftRel _≈_) (lift₂ _∙_) (lift₀ ε) (lift₁ _⁻¹)
isGroup isGroup = record
{ isMonoid = isMonoid M.isMonoid
; inverse = (λ f M.inverseˡ (f _)) , λ f M.inverseʳ (f _)
; ⁻¹-cong = λ f M.⁻¹-cong f
}
where module M = IsGroup isGroup

isAbelianGroup : IsAbelianGroup _≈_ _∙_ ε _⁻¹
IsAbelianGroup (liftRel _≈_) (lift₂ _∙_) (lift₀ ε) (lift₁ _⁻¹)
isAbelianGroup isAbelianGroup = record
{ isGroup = isGroup M.isGroup
; comm = λ f g M.comm (f _) (g _)
}
where module M = IsAbelianGroup isAbelianGroup

isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero _≈_ _+_ _*_ 0# 1#
IsSemiringWithoutAnnihilatingZero (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#)
isSemiringWithoutAnnihilatingZero isSemiringWithoutAnnihilatingZero = record
{ +-isCommutativeMonoid = isCommutativeMonoid M.+-isCommutativeMonoid
; *-cong = λ g h M.*-cong g h
; *-assoc = λ f g h M.*-assoc (f _) (g _) (h _)
; *-identity = (λ f M.*-identityˡ (f _)) , λ f M.*-identityʳ (f _)
; distrib = (λ f g h M.distribˡ (f _) (g _) (h _)) , λ f g h M.distribʳ (f _) (g _) (h _)
}
where module M = IsSemiringWithoutAnnihilatingZero isSemiringWithoutAnnihilatingZero

isSemiring : IsSemiring _≈_ _+_ _*_ 0# 1#
IsSemiring (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#)
isSemiring isSemiring = record
{ isSemiringWithoutAnnihilatingZero = isSemiringWithoutAnnihilatingZero M.isSemiringWithoutAnnihilatingZero
; zero = (λ f M.zeroˡ (f _)) , λ f M.zeroʳ (f _)
}
where module M = IsSemiring isSemiring

isRing : IsRing _≈_ _+_ _*_ -_ 0# 1#
IsRing (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₁ -_) (lift₀ 0#) (lift₀ 1#)
isRing isRing = record
{ +-isAbelianGroup = isAbelianGroup M.+-isAbelianGroup
; *-cong = λ g h M.*-cong g h
; *-assoc = λ f g h M.*-assoc (f _) (g _) (h _)
; *-identity = (λ f M.*-identityˡ (f _)) , λ f M.*-identityʳ (f _)
; distrib = (λ f g h M.distribˡ (f _) (g _) (h _)) , λ f g h M.distribʳ (f _) (g _) (h _)
}
where module M = IsRing isRing


------------------------------------------------------------------------
-- Bundles

magma : Magma c ℓ Magma (a ⊔ c) (a ⊔ ℓ)
magma m = record { isMagma = isMagma (Magma.isMagma m) }

semigroup : Semigroup c ℓ Semigroup (a ⊔ c) (a ⊔ ℓ)
semigroup m = record { isSemigroup = isSemigroup (Semigroup.isSemigroup m) }

band : Band c ℓ Band (a ⊔ c) (a ⊔ ℓ)
band m = record { isBand = isBand (Band.isBand m) }

commutativeSemigroup : CommutativeSemigroup c ℓ CommutativeSemigroup (a ⊔ c) (a ⊔ ℓ)
commutativeSemigroup m = record { isCommutativeSemigroup = isCommutativeSemigroup (CommutativeSemigroup.isCommutativeSemigroup m) }

monoid : Monoid c ℓ Monoid (a ⊔ c) (a ⊔ ℓ)
monoid m = record { isMonoid = isMonoid (Monoid.isMonoid m) }

group : Group c ℓ Group (a ⊔ c) (a ⊔ ℓ)
group m = record { isGroup = isGroup (Group.isGroup m) }

abelianGroup : AbelianGroup c ℓ AbelianGroup (a ⊔ c) (a ⊔ ℓ)
abelianGroup m = record { isAbelianGroup = isAbelianGroup (AbelianGroup.isAbelianGroup m) }

semiring : Semiring c ℓ Semiring (a ⊔ c) (a ⊔ ℓ)
semiring m = record { isSemiring = isSemiring (Semiring.isSemiring m) }

ring : Ring c ℓ Ring (a ⊔ c) (a ⊔ ℓ)
ring m = record { isRing = isRing (Ring.isRing m) }

0 comments on commit e25f9d8

Please sign in to comment.