Skip to content

ZJU-DAILY/MICS

Repository files navigation

The Most Influenced Community Search on Social Networks

Introduction

  1. This repository contains the technical report of our paper.
  2. This repository contains the codes and datasets used in our paper.

Datasets

We use 8 publicly available real-world networks, including EmailCore, WikiVote, Epinions, Slashdot, EmailEuall, Pokec, LiveJournal, and WikiLink.

WikiLink is available on Konect [1].

The Others are available on SNAP [2].

[1] Jérôme Kunegis. 2013. Konect: the koblenz network collection. In Proceedings of the 22nd international conference on world wide web. 1343–1350.

[2] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data.

Algorithms

The following files are the codes for our proposed algorithms. All methods are implemented in C++ and executed on a server with Intel(R) Core(TM) 3.70GHz CPU and 128GB of RAM.

In InfExpectation_computation folder

  1. infseed.cpp: computing singleton influence of each node, and sort them in descending order of influence.
./InfExpectation_computation --r 10000 --dataset <dataset root> --model IC
  1. tim.cpp: selecting k seed nodes with the maximum influence spread using TIM algorithm [3]

[3] Youze Tang, Xiaokui Xiao, and Yanchen Shi. 2014. Influence maximization: Nearoptimal time complexity meets practical efficiency. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. 75–86.

./InfExpectation_computation -dataset <dataset root> -model IC  -seedset <seedset output root>  -epsilon <sampling approximation loss> -k <number of seeds>
  1. seed_gen.cpp: generating seed nodes using Random/Inf methods
./InfExpectation_computation --method random --k <number of seeds> --dataset <dataset root> --seedset <seedset output root>
./InfExpectation_computation --method inf --k <number of seeds> --f <fraction> --dataset <dataset root> --seedset <seedset output root>
  1. InfCompute.cpp: Compute influenced expectation of each node under a seed node set (S-InfExp algorithm).
./InfExpectation_computation --theta 10000 --dataset <dataset root> --model IC --mode <IM/Random/Inf> --seedset <seedset root>  --seednum <number of seeds>

In MLPred folder

Predicting influenced expectations (L-InfExp algorithm).

In InfCS folder

Searching for the MIC with GlobalSearch and LocalSearch algorithm. (SFIS: S-InfExp algorithm, ONPR: L-InfExp algorithm)

./InfCS -dataset=<dataset root> -subgraph=<subgraph root for scalability test> -model=IC -mode=<IM/Random/Inf> -func=<avg/min/max/sum> -seed=<number of seeds> -k=<indegree constraint> -l=<outdegree constraint> -s=<size constraint of MIC> -alg=approx -med=<global/local> -inf=<SFIS/ONPR> -p=<percentage of nodes for scalability test>

Running Environment

A 64-bit Linux-based OS.

GCC 4.7.2 and later.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published