Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added test to linear regression #9943 #12353

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 22 additions & 0 deletions machine_learning/linear_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,14 @@ def run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta):
:param theta : Feature vector (weight's for our model)
;param return : Updated Feature's, using
curr_features - alpha_ * gradient(w.r.t. feature)
>>> import numpy as np
>>> data_x = np.array([[1, 2], [3, 4]])
>>> data_y = np.array([5, 6])
>>> len_data = len(data_x)
>>> alpha = 0.01
>>> theta = np.array([0.1, 0.2])
>>> run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta)
array([0.196, 0.343])
"""
n = len_data

Expand All @@ -58,6 +66,12 @@ def sum_of_square_error(data_x, data_y, len_data, theta):
:param len_data : len of the dataset
:param theta : contains the feature vector
:return : sum of square error computed from given feature's

Example:
>>> vc_x = np.array([[1.1], [2.1], [3.1]])
>>> vc_y = np.array([1.2, 2.2, 3.2])
>>> round(sum_of_square_error(vc_x, vc_y, 3, np.array([1])),3)
np.float64(0.005)
"""
prod = np.dot(theta, data_x.transpose())
prod -= data_y.transpose()
Expand Down Expand Up @@ -93,6 +107,11 @@ def mean_absolute_error(predicted_y, original_y):
:param predicted_y : contains the output of prediction (result vector)
:param original_y : contains values of expected outcome
:return : mean absolute error computed from given feature's

>>> predicted_y = [3, -0.5, 2, 7]
>>> original_y = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(predicted_y, original_y)
0.5
"""
total = sum(abs(y - predicted_y[i]) for i, y in enumerate(original_y))
return total / len(original_y)
Expand All @@ -114,4 +133,7 @@ def main():


if __name__ == "__main__":
import doctest

doctest.testmod()
main()