Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Fix] utf-8 codec cant decode #251

Merged
merged 1 commit into from
May 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions utilization/dataset/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -766,15 +766,16 @@ def log_final_results(
return log_final_results(
raw_predictions=raw_predictions,
processed_predictions=processed_predictions,
evaluation_instances=self.evaluation_instances,
score_lists=score_lists,
multiple_source=(self.dataset_name == "winogrande"),
model_evaluation_method=self.model_evaluation_method,
use_normalization=self.use_normalization,
option_nums=self.option_nums,
len_evaluation_data=len(self.evaluation_data),
evaluation_instances=self.evaluation_instances,
sample_num=self.sample_num,
references=self.references,
local_model=self.model.is_local_model(),
)

def __repr__(self):
Expand Down Expand Up @@ -967,7 +968,7 @@ def step(
if batch_size > 0:
tqdm.set_description(self.display_names[self._cur_idx])
if batch_size > 0:
writer.log_batch_results(batch_raw_predictions, self._lines_iter)
writer.log_batch_results(batch_raw_predictions, self._datasets[0].model.is_local_model(), self._lines_iter)

def __repr__(self):
reprs = []
Expand Down
6 changes: 4 additions & 2 deletions utilization/model/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -248,8 +248,10 @@ def set_generation_args(self, **extra_model_args):
logger.warning(f"Unused generation arguments: {extra_model_args}")
return self.generation_kwargs

def generation(self, batched_inputs: Union[List[str],
List[Conversation]]) -> Union[List[str], List[Tuple[str, ...]]]:
def generation(
self,
batched_inputs: Union[List[str], List[Conversation]],
) -> Union[List[str], List[Tuple[str, ...]]]:
multi_turn_results = self.request(
prompt=batched_inputs,
multi_turn=self.multi_turn,
Expand Down
3 changes: 2 additions & 1 deletion utilization/utils/arguments.py
Original file line number Diff line number Diff line change
Expand Up @@ -690,14 +690,15 @@ def parse_argument(args: Optional[List[str]] = None,
epilog=EXAMPLE_STRING,
formatter_class=argparse.RawDescriptionHelpFormatter,
)
model_args, dataset_args, evaluation_args = parser.parse_args_into_dataclasses(args)

try:
from dotenv import load_dotenv
load_dotenv()
except (ImportError, ModuleNotFoundError):
pass

model_args, dataset_args, evaluation_args = parser.parse_args_into_dataclasses(args)

if model_args.bnb_config:
bnb_config_dict = json.loads(model_args.bnb_config)
model_args.bnb_config = BitsAndBytesConfig(**bnb_config_dict)
Expand Down
3 changes: 3 additions & 0 deletions utilization/utils/conversation.py
Original file line number Diff line number Diff line change
Expand Up @@ -331,6 +331,9 @@ def to_model_prompt(
max_turns=max_turns,
)[0]

def apply_prompt_template(self):
return self.formatter.apply_prompt_template(self)

def add(
self,
other: Optional["Conversation"] = None,
Expand Down
29 changes: 26 additions & 3 deletions utilization/utils/log_results.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@

import pandas as pd

from .conversation import Conversation

logger = getLogger(__name__)

if typing.TYPE_CHECKING:
Expand Down Expand Up @@ -35,6 +37,22 @@ def wrapper(df: pd.DataFrame):
return wrapper


def dump_conversations(convs: List[Any], local: bool):
if isinstance(convs, (str, Conversation)):
convs = [convs]

if isinstance(convs[0], Conversation):
if not local:
convs = [[str(m['content']) for m in p.messages] for p in convs]
else:
convs = [p.apply_prompt_template() for p in convs]

if not isinstance(convs[0], str):
convs = [str(p) for p in convs]

return convs


class PredictionWriter:

def __init__(self, evaluation_path: Optional[str]):
Expand Down Expand Up @@ -83,14 +101,15 @@ def _write(self, data):
def log_batch_results(
self,
raw_predictions: List[str],
local_model: bool,
lines_iter: Iterator[Tuple[int, str, Any]],
) -> int:
"""Log the batch predictions to the evaluation jsonlines file."""
if not self.alive():
return len(raw_predictions)

for raw_prediction, (idx, source, reference) in zip(raw_predictions, lines_iter):
if not isinstance(source, str):
source = str(source)
source = dump_conversations(source, local_model)
lines = {
"index": idx,
"source": source,
Expand Down Expand Up @@ -140,16 +159,20 @@ def load_continue(self) -> Iterator[typing.Any]:
def log_final_results(
raw_predictions: List[str],
processed_predictions: List[Union[str, float]],
evaluation_instances: List[tuple],
score_lists: Dict[str, List[float]],
multiple_source: bool,
model_evaluation_method: str,
use_normalization: bool,
option_nums: List[int],
len_evaluation_data: int,
evaluation_instances: List[tuple],
sample_num: int,
references: List[Any],
local_model: bool,
) -> Optional[pd.Series]:
"""Aggregate the final results and prepare for dumping to a json file."""

evaluation_instances = dump_conversations(evaluation_instances, local_model)

transposed_score_lists = [dict(zip(score_lists.keys(), values)) for values in zip(*score_lists.values())]
if model_evaluation_method == "generation":
Expand Down
Loading