Skip to content
This repository has been archived by the owner on Jul 22, 2024. It is now read-only.
/ constrained-FSCIL Public archive

PyTorch Implementation of the CVPR'22 Paper "Constrained Few-shot Class-incremental Learning"

License

Notifications You must be signed in to change notification settings

IBM/constrained-FSCIL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Constrained Few-shot Class-incremental Learning

Michael Hersche, Geethan Karunaratne, Giovanni Cherubini, Luca Benini, Abu Sebastian, Abbas Rahimi

CVPR'22

Requirements

The conda software is required for running the code. Generate a new environment with

$ conda create --name cfscil_env python=3.6
$ conda activate cfscil_env

We need PyTorch 1.3 and CUDA.

$ (cfscil_env) conda install pytorch=1.3 torchvision cudatoolkit=10.1 -c pytorch
$ (cfscil_env) pip install -r requirements.txt

Datasets

We provide the code for running experiments on miniImageNet and CIFAR100. The experiments for Omniglot have been conducted in a different framework, and cannot be released. However, we provide our split under data/index_list/omniglot as well as a dataloader under code/lib/dataloader/FSCIL/omniglot.

We follow the FSCIL setting to use the same data index_list for training. For CIFAR100, the dataset will be download automatically. For miniImageNet, you can download the dataset here. Please put the downloaded file under code/data/ folder and unzip it.

$ (cfscil_env) cd code/data/
$ (cfscil_env) gdown 1_x4o0iFetEv-T3PeIxdSbBPUG4hFfT8U
$ (cfscil_env) tar -xvf miniimagenet.tar 

Usage

The whole simulator is runnable from the command line via the code/main.py script which serves as a command parser. Everything should be run from the code directory.

The structure of any command looks like

$ (cfscil_env) python main.py command [subcommand(s)] [-option(s)] [argument(s)]

and help can be found for every command and subcommand by adding a trailing --help. The main.py file also contains all default parameters used for simulations.

Simulation

To run a single simulation of the model (incl. training, validation, testing), use the simulation command. A logging directory should be specified, in case the default path is not wanted. Any simulation parameter that should be different from the default found in main.py can be specified by chaining -p parameter value pairs.

$ (cfscil_env) python main.py simulation --logdir path/to/logdir -p parameter_1 value_1 -p parameter_2 value_2

All parameters are interpreted as strings and translated by the parser, so no "s are needed. Boolean parameters' value can be specified as t, true, f or false.

Run main experiments on CIFAR100

# Pretraining
$ (cfscil_env) python -u main.py simulation -v -ld "log/test_CIFAR100/pretrain_basetrain" -p max_train_iter 120  -p data_folder "data" -p trainstage pretrain_baseFSCIL -p pretrainFC linear -p dataset cifar100 -p random_seed 7 -p learning_rate 0.01 -p batch_size 128 -p optimizer SGD -p SGDnesterov True -p lr_step_size 30 -p representation real -p dim_features 512 -p block_architecture mini_resnet12

# Metatraining
$ (cfscil_env) python -u main.py simulation -v -ld "log/test_CIFAR100/meta_basetrain" -p max_train_iter 70000 -p data_folder "data" -p resume "log/test_CIFAR100/pretrain_basetrain"  -p trainstage metatrain_baseFSCIL -p dataset cifar100 -p average_support_vector_inference True -p random_seed 7 -p learning_rate 0.01 -p batch_size_training 10 -p batch_size_inference 128 -p optimizer SGD -p sharpening_activation softabs -p SGDnesterov True -p lr_step_size 30000  -p  representation tanh -p dim_features 512 -p num_ways 60 -p num_shots 5 -p block_architecture mini_resnet12

# Evaluation Mode 1 (num_shots relates only to number of shots in base session, on novel there are always 5)
$ (cfscil_env) python -u main.py simulation -v -ld "log/test_CIFAR100/eval/mode1"  -p data_folder "data"  -p resume "log/test_CIFAR100/meta_basetrain" -p dim_features 512 -p retrain_iter 0 -p nudging_iter 0 -p bipolarize_prototypes False -p nudging_act_exp 4 -p nudging_act doubleexp -p trainstage train_FSCIL -p dataset cifar100 -p random_seed 7 -p learning_rate 0.01 -p batch_size_training 128 -p batch_size_inference 128 -p num_query_training 0 -p optimizer SGD -p sharpening_activation abs -p SGDnesterov True -p representation tanh -p retrain_act tanh -p num_ways 60 -p num_shots 200 -p block_architecture mini_resnet12

# Evaluation Mode 2
$ (cfscil_env) python -u main.py simulation -v -ld "log/test_CIFAR100/eval/mode2"  -p data_folder "data"  -p resume "log/test_CIFAR100/meta_basetrain" -p dim_features 512 -p retrain_iter 10 -p nudging_iter 0 -p bipolarize_prototypes True -p nudging_act_exp 4 -p nudging_act doubleexp -p trainstage train_FSCIL -p dataset cifar100 -p random_seed 7 -p learning_rate 0.01 -p batch_size_training 128 -p batch_size_inference 128 -p num_query_training 0 -p optimizer SGD -p sharpening_activation abs -p SGDnesterov True -p representation tanh -p retrain_act tanh -p num_ways 60 -p num_shots 200 -p block_architecture mini_resnet12

# Evaluation Mode 3
$ (cfscil_env) python -u main.py simulation -v -ld "log/test_CIFAR100/eval/mode3" -p data_folder "data"  -p resume "log/test_CIFAR100/meta_basetrain" -p dim_features 512 -p retrain_iter 50 -p nudging_iter 100 -p bipolarize_prototypes False -p nudging_act_exp 4 -p nudging_act doubleexp -p trainstage train_FSCIL -p dataset cifar100 -p random_seed 7 -p learning_rate 0.01 -p batch_size_training 128 -p batch_size_inference 128 -p num_query_training 0 -p optimizer SGD -p sharpening_activation abs -p SGDnesterov True -p representation tanh -p retrain_act tanh -p num_ways 60 -p num_shots 200 -p block_architecture mini_resnet12

Run main experiments on miniImageNet

# Pretraining
$ (cfscil_env) python -u main.py simulation -v -ld "log/test_mini_imagenet/pretrain_basetrain" -p max_train_iter 120  -p data_folder "data" -p trainstage pretrain_baseFSCIL -p pretrainFC linear -p dataset mini_imagenet -p random_seed 7 -p learning_rate 0.01 -p batch_size 128 -p optimizer SGD -p SGDnesterov True -p lr_step_size 30 -p representation real -p dim_features 512 -p block_architecture mini_resnet12

# Metatraining
$ (cfscil_env) python -u main.py simulation -v -ld "log/test_mini_imagenet/meta_basetrain" -p max_train_iter 70000 -p data_folder "data" -p resume "log/test_mini_imagenet/pretrain_basetrain"  -p trainstage metatrain_baseFSCIL -p dataset mini_imagenet -p average_support_vector_inference True -p random_seed 7 -p learning_rate 0.01 -p batch_size_training 10 -p batch_size_inference 128 -p optimizer SGD -p sharpening_activation softabs -p SGDnesterov True -p lr_step_size 30000  -p  representation tanh -p dim_features 512 -p num_ways 60 -p num_shots 5 -p block_architecture mini_resnet12

# Evaluation Mode 1 (num_shots relates only to number of shots in base session, on novel there are always 5)
$ (cfscil_env) python -u main.py simulation -v -ld "log/test_mini_imagenet/eval/mode1"  -p data_folder "data"  -p resume "log/test_mini_imagenet/meta_basetrain" -p dim_features 512 -p retrain_iter 0 -p nudging_iter 0 -p bipolarize_prototypes False -p nudging_act_exp 4 -p nudging_act doubleexp -p trainstage train_FSCIL -p dataset mini_imagenet -p random_seed 7 -p learning_rate 0.01 -p batch_size_training 128 -p batch_size_inference 128 -p num_query_training 0 -p optimizer SGD -p sharpening_activation abs -p SGDnesterov True -p representation tanh -p retrain_act tanh -p num_ways 60 -p num_shots 100 -p block_architecture mini_resnet12

# Evaluation Mode 2
$ (cfscil_env) python -u main.py simulation -v -ld "log/test_mini_imagenet/eval/mode2"  -p data_folder "data"  -p resume "log/test_mini_imagenet/meta_basetrain" -p dim_features 512 -p retrain_iter 10 -p nudging_iter 0 -p bipolarize_prototypes True -p nudging_act_exp 4 -p nudging_act doubleexp -p trainstage train_FSCIL -p dataset mini_imagenet -p random_seed 7 -p learning_rate 0.01 -p batch_size_training 128 -p batch_size_inference 128 -p num_query_training 0 -p optimizer SGD -p sharpening_activation abs -p SGDnesterov True -p representation tanh -p retrain_act tanh -p num_ways 60 -p num_shots 100 -p block_architecture mini_resnet12

# Evaluation Mode 3
$ (cfscil_env) python -u main.py simulation -v -ld "log/test_mini_imagenet/eval/mode3" -p data_folder "data"  -p resume "log/test_mini_imagenet/meta_basetrain" -p dim_features 512 -p retrain_iter 50 -p nudging_iter 100 -p bipolarize_prototypes False -p nudging_act_exp 4 -p nudging_act doubleexp -p trainstage train_FSCIL -p dataset mini_imagenet -p random_seed 7 -p learning_rate 0.01 -p batch_size_training 128 -p batch_size_inference 128 -p num_query_training 0 -p optimizer SGD -p sharpening_activation abs -p SGDnesterov True -p representation tanh -p retrain_act tanh -p num_ways 60 -p num_shots 100 -p block_architecture mini_resnet12

Inspection with TensorBoard

For a detailed inspection of the simulation, the TensorBoard tool can be used. During simulations, data is collected which can be illustrated by the tool in the browser.

Acknowledgment

Our code is based on

Citation

If you use the work released here for your research, please cite this paper:

@inproceedings{hersche2022cfscil,
    Author = {Hersche, Michael and Karunaratne, Geethan and Cherubini, Giovanni and Benini, Luca and Sebastian, Abu and Rahimi, Abbas },
    Booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    Title = {Constrained Few-shot Class-incremental Learning},
    Year = {2022}}

License

Our code is licensed under Apache 2.0. Please refer to the LICENSE file for the licensing of our code.

About

PyTorch Implementation of the CVPR'22 Paper "Constrained Few-shot Class-incremental Learning"

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages